![]() |
Object-oriented Scientific Computing Library: Version 0.910
|
Adaptive numerical integration of a function (without singularities) on a bounded interval (GSL) More...
#include <gsl_inte_qag.h>
Adaptive integration of a univariate function requires two main procedures: approximating the integral on a bounded interval, and estimating the approximation error. The algorithm recursively refines the interval, computing the integral and its error estimate on each subinterval, until the total error estimate over all subintervals falls within the user-specified tolerance. The value returned is the sum of the (approximated) integrals over all subintervals.
See GSL-based integration routines in the User's guide for general information about the GSL integration classes.
Definition at line 78 of file gsl_inte_qag.h.
Public Member Functions | |
gsl_inte_qag () | |
Create an integrator with the specified rule. | |
virtual int | integ_err (func_t &func, double a, double b, double &res, double &err) |
Integrate function func from a to b and place the result in res and the error in err . | |
const char * | type () |
Return string denoting type ("gsl_inte_qag") | |
Protected Member Functions | |
int | qag (func_t &func, const double a, const double b, const double l_epsabs, const double l_epsrel, double *result, double *abserr) |
Perform an adaptive integration given the coefficients, and returning result . |
int gsl_inte_qag< func_t >::qag | ( | func_t & | func, |
const double | a, | ||
const double | b, | ||
const double | l_epsabs, | ||
const double | l_epsrel, | ||
double * | result, | ||
double * | abserr | ||
) | [inline, protected] |
Definition at line 107 of file gsl_inte_qag.h.
Documentation generated with Doxygen. Provided under the GNU Free Documentation License (see License Information).