Object-oriented Scientific Computing Library: Version 0.910
Variables
o2scl_const Namespace Reference

O2scl constants.

Variables

const double gsl_posinf = GSL_POSINF
const double gsl_neginf = GSL_NEGINF
const double pi = acos(-1.0)
 $ \pi $
const double pi2 = pi*pi
 $ \pi^2 $
const double zeta32 = 2.6123753486854883433
 $ \zeta(3/2) $
const double zeta2 = 1.6449340668482264365
 $ \zeta(2) $
const double zeta52 = 1.3414872572509171798
 $ \zeta(5/2) $
const double zeta3 = 1.2020569031595942854
 $ \zeta(3) $
const double zeta5 = 1.0369277551433699263
 $ \zeta(5) $
const double zeta7 = 1.0083492773819228268
 $ \zeta(7) $
Particle Physics Booklet

(see also D.E. Groom, et. al., Euro. Phys. J. C 15 (2000) 1.)

const double sin2_theta_weak = 0.2224
 $ \sin^2 \theta_W $
const double mev_kg = 1.782661731e-30
 1 MeV in kg
const double mev_cgs = 1.60217733e-6
 1 MeV in $ g \cdot cm^2 / s^2 $ (ergs)
const double boltzmann_mev_K = 8.617342e-11
 1 MeV in Kelvin
From http://physics.nist.gov/cuu/Constants (7/27/11)
const double hc_mev_fm = 197.3269718
 $ \hbar c $ in MeV fm
const double gfermi_gev = 1.166364e-5
 Fermi coupling constant ( $ G_F $) in $ GeV^{-2} $.
const double hc_mev_cm = 1.973269718e-11
 $ \hbar c $ in MeV cm
Squared electron charge
const double e2_gaussian = o2scl_const::hc_mev_fm*gsl_num::fine_structure
 Electron charge squared in Gaussian units.
const double e2_hlorentz = gsl_num::fine_structure*4.0*pi
 Electron charge sqaured in Heaviside-Lorentz units where $\hbar=c=1$.
const double e2_mksa = gsl_mksa::electron_charge
 Electron charge squared in SI(MKSA) units.

Variable Documentation

In Gaussian Units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = 4 \pi \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - 4 \pi \rho \, , &\\& F=\frac{q_1 q_2}{r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{1}{8 \pi} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{\hbar c}=\frac{1}{137}& \end{eqnarray*}

Definition at line 952 of file constants.h.

In Heaviside-Lorentz units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - \rho \, , &\\& F=\frac{q_1 q_2}{4 \pi r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{1}{2} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{4 \pi}=\frac{1}{137}& \end{eqnarray*}

Definition at line 972 of file constants.h.

In MKSA units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - \rho \, , &\\& F=\frac{1}{4 \pi \varepsilon_0}\frac{q_1 q_2}{r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{\varepsilon_0}{2} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{4 \pi \varepsilon_0 \hbar c}=\frac{1}{137}& \end{eqnarray*}

Note the conversion formulas

\[ q_HL=\sqrt{4 \pi} q_G = \frac{1}{\sqrt{\varepsilon_0}} q_{SI} \]

as mentioned in pg. 13 of D. Griffiths Intro to Elem. Particles.

Definition at line 997 of file constants.h.

 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines

Documentation generated with Doxygen. Provided under the GNU Free Documentation License (see License Information).

Get Object-oriented Scientific Computing
Lib at SourceForge.net. Fast, secure and Free Open Source software
downloads.