gsl_inte_cheb Class Template Reference

Chebyshev integration base class (GSL). More...

#include <gsl_inte_qawc.h>

Inheritance diagram for gsl_inte_cheb:

gsl_inte_transform gsl_inte_singular gsl_inte_kronrod gsl_inte_table inte gsl_inte gsl_inte_qawc gsl_inte_qawo_sin gsl_inte_qaws gsl_inte_qawf_sin gsl_inte_qawo_cos gsl_inte_qawf_cos

Detailed Description

template<class param_t, class func_t>
class gsl_inte_cheb< param_t, func_t >

This class provides the basic Chebyshev integration functions for use in the GSL-based integration classes which require them.

Definition at line 41 of file gsl_inte_qawc.h.


Public Member Functions

void compute_moments (double cc, double *moment)
 Compute the Chebyshev moments.
void gsl_integration_qcheb (func_t &f, double a, double b, double *cheb12, double *cheb24, param_t &pa)
 Perform the integration.

Member Function Documentation

void gsl_integration_qcheb ( func_t &  f,
double  a,
double  b,
double *  cheb12,
double *  cheb24,
param_t &  pa 
) [inline]

piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven

this routine computes the chebyshev series expansion of degrees 12 and 24 of a function using a fast fourier transform method f(x) = sum(k=1,..,13) (cheb12(k)*t(k-1,x)), f(x) = sum(k=1,..,25) (cheb24(k)*t(k-1,x)), where t(k,x) is the chebyshev polynomial of degree k.

x - double precision vector of dimension 11 containing the values cos(k*pi/24), k = 1, ..., 11

fval - double precision vector of dimension 25 containing the function values at the points (b+a+(b-a)*cos(k*pi/24))/2, k = 0, ...,24, where (a,b) is the approximation interval. fval(1) and fval(25) are divided by two (these values are destroyed at output).

on return cheb12 - double precision vector of dimension 13 containing the chebyshev coefficients for degree 12

cheb24 - double precision vector of dimension 25 containing the chebyshev coefficients for degree 24

Definition at line 108 of file gsl_inte_qawc.h.


The documentation for this class was generated from the following file:

Documentation generated with Doxygen and provided under the GNU Free Documentation License. See License Information for details.

Project hosting provided by SourceForge.net Logo, O2scl Sourceforge Project Page