00001 /* 00002 ------------------------------------------------------------------- 00003 00004 Copyright (C) 2006, 2007, 2008, 2009, Andrew W. Steiner 00005 00006 This file is part of O2scl. 00007 00008 O2scl is free software; you can redistribute it and/or modify 00009 it under the terms of the GNU General Public License as published by 00010 the Free Software Foundation; either version 3 of the License, or 00011 (at your option) any later version. 00012 00013 O2scl is distributed in the hope that it will be useful, 00014 but WITHOUT ANY WARRANTY; without even the implied warranty of 00015 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00016 GNU General Public License for more details. 00017 00018 You should have received a copy of the GNU General Public License 00019 along with O2scl. If not, see <http://www.gnu.org/licenses/>. 00020 00021 ------------------------------------------------------------------- 00022 */ 00023 /* math2c 00024 Destination: nonrel_fermion.cpp 00025 (* For convenience *) 00026 pi=ArcCos[-1.0] 00027 (* --------------------------------------------------------*) 00028 m=5.0 00029 mu=5.1 00030 T=0.01 00031 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00032 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00033 Reference: den1 t1 00034 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00035 Reference: ed1 t2 00036 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+\ 00037 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00038 Reference: en1 t3 00039 t4=-t2+t3*T+t1*mu 00040 Reference: pr1 t4 00041 (* --------------------------------------------------------*) 00042 m=5.0 00043 mu=5.1 00044 T=0.1 00045 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00046 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00047 Reference: den2 t1 00048 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00049 Reference: ed2 t2 00050 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+\ 00051 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00052 Reference: en2 t3 00053 t4=-t2+t3*T+t1*mu 00054 Reference: pr2 t4 00055 (* --------------------------------------------------------*) 00056 m=5.0 00057 mu=5.1 00058 T=1.0 00059 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00060 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00061 Reference: den3 t1 00062 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00063 Reference: ed3 t2 00064 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+ \ 00065 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00066 Reference: en3 t3 00067 t4=-t2+t3*T+t1*mu 00068 Reference: pr3 t4 00069 (* --------------------------------------------------------*) 00070 m=5.0 00071 mu=6.0 00072 T=0.05 00073 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00074 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00075 Reference: den4 t1 00076 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00077 Reference: ed4 t2 00078 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+ \ 00079 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00080 Reference: en4 t3 00081 t4=-t2+t3*T+t1*mu 00082 Reference: pr4 t4 00083 (* --------------------------------------------------------*) 00084 m=5.0 00085 mu=6.0 00086 T=0.1 00087 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00088 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00089 Reference: den5 t1 00090 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00091 Reference: ed5 t2 00092 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+ \ 00093 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00094 Reference: en5 t3 00095 t4=-t2+t3*T+t1*mu 00096 Reference: pr5 t4 00097 (* --------------------------------------------------------*) 00098 m=5.0 00099 mu=6.0 00100 T=1.0 00101 dist=1/(1+Exp[x^2*m/2/T-(mu-m)/T]) 00102 t1=NIntegrate[x^2*m^3*dist/pi/pi,{x,0,10.0}] 00103 Reference: den6 t1 00104 t2=NIntegrate[x^4*m^4/2*dist/pi/pi,{x,0,10.0}]+t1*m 00105 Reference: ed6 t2 00106 t3=NIntegrate[-x^2*m^3/pi/pi*(dist*Log[dist]+ \ 00107 (1.0-dist)*Log[1.0-dist]),{x,0,10.0}] 00108 Reference: en6 t3 00109 t4=-t2+t3*T+t1*mu 00110 Reference: pr6 t4 00111 00112 */
Documentation generated with Doxygen and provided under the GNU Free Documentation License. See License Information for details.
Project hosting provided by
,
O2scl Sourceforge Project Page