#include <gsl_inte_qawc.h>
This class provides the basic Chebyshev integration functions for use in the GSL-based integration classes which require them.
Definition at line 41 of file gsl_inte_qawc.h.
Public Member Functions | |
void | compute_moments (double cc, double *moment) |
Compute the Chebyshev moments. | |
void | gsl_integration_qcheb (func_t &f, double a, double b, double *cheb12, double *cheb24, param_t &pa) |
Perform the integration. |
void gsl_integration_qcheb | ( | func_t & | f, | |
double | a, | |||
double | b, | |||
double * | cheb12, | |||
double * | cheb24, | |||
param_t & | pa | |||
) | [inline] |
Perform the integration.
piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven
this routine computes the chebyshev series expansion of degrees 12 and 24 of a function using a fast fourier transform method f(x) = sum(k=1,..,13) (cheb12(k)*t(k-1,x)), f(x) = sum(k=1,..,25) (cheb24(k)*t(k-1,x)), where t(k,x) is the chebyshev polynomial of degree k.
x - double precision vector of dimension 11 containing the values cos(k*pi/24), k = 1, ..., 11
fval - double precision vector of dimension 25 containing the function values at the points (b+a+(b-a)*cos(k*pi/24))/2, k = 0, ...,24, where (a,b) is the approximation interval. fval(1) and fval(25) are divided by two (these values are destroyed at output).
on return cheb12 - double precision vector of dimension 13 containing the chebyshev coefficients for degree 12
cheb24 - double precision vector of dimension 25 containing the chebyshev coefficients for degree 24
Definition at line 108 of file gsl_inte_qawc.h.
Documentation generated with Doxygen and provided under the GNU Free Documentation License. See License Information for details.
Project hosting provided by
,
O2scl Sourceforge Project Page