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1 Main Page

1.1 Quick Reference to User’s Guide

* Hadronic equations of state

* Equations of state of quark matter

* Solution of the Tolman-Oppenheimer-Volkov equations
* Naive Cold Neutron Stars

* Non-relativistic Finite Temperature Approximations

» Example source code

* Bibliography

1.2 Hadronic equations of state

The hadronic equations of state are all inherited from hadronic_eos: schematic_eos, skyrme_eos, rmf_eos, apr_eos, and gen_-
potential_eos.

hadronic_eos includes several methods that can be used to calculate the saturation properties of nuclear matter. These methods are
sometimes overloaded in descendants when exact formulas are available.

There is also a set of classes to modify the quartic term of the symmetry energy: rmf4_eos, apr4_eos, skyrme4_eos, and mdi4_eos
all based on sym4_eos_base which can be used in sym4_eos.

1.3 Equations of state of quark matter

The equations of state of quark matter are all inherited from quark_eos: bag_eos is a simple bag model, nambujl_eos is the Nambu—
Jona-Lasinio model.

1.4 Solution of the Tolman-Oppenheimer-Volkov equations

The class tov_solve provide a solution to the Tolman-Oppenheimer-Volkov (TOV) equations given an equation of state. This is
particularly useful for static neutron star structure: given any equation of state one can calculate the mass vs. radius curve and the
properties of any star of a given mass. An adaptive integration is employed and calculates the gravitational mass, the baryonic mass
(if the baryon density is supplied), and the gravitational potential. The remaining columns is the equation of state are also interpolated
into the solution, e.g. if a chemical potential is given, then the radial dependence of the chemical potential for a 1.4 solar mass star
can be automatically computed. The equation of state may be specified in arbitrary units so long as an appropriate conversion factor
is supplied. An equation of state for low densities (baryon density < 0.08 fm ) is provided and can be automatically appended to
the user-defined equation of state.

This is still experimental.
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1.5 Naive Cold Neutron Stars

There is also a class to calculate zero-temperature neutron stars: cold_nstar. It uses tov_solve to compute the structure, given a
hadronic equation of state (of type hadronic_eos). It also computes the adiabatic index, the speed of sound, and determines the
possibility of the direct Urca process as a function of density or radius.

This is still experimental.

1.6 Non-relativistic Finite Temperature Approximations

This is taken from the Prakash87.

The entropy is
Z ng lnng + (1 — ng) In (1 — ng)]
k

The low-temperature (degenerate) approximation to the entropy is
s=7?/3N(0)T

where the density of states at the Fermi surface is

NO) = 36 — ) = 2

. kpvp
where the Fermi velocity is
ok |, m*
The latter equation defines the effective mass. The level density parameter is given by
72 N(0)
6p

Defining the Fermi temperature:
1
TF = ikaF = k%/?/m*

another expression for the entropy is
2

s = 5 p(T/Tr)

Expressions for the remaining quantities are
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Typically, the leading correction to
2

™
5= o/ Tr)
is of order (7'/Tx)? unless soft collective modes give rise to a (7//Tx)* In(T/TF) correction.

At high temperature (non-degenerate approximation), a stationary phase approximation gives
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where ~ is the spin and isospin degeneracy and the velocity function is vy = e /Ok . The function f(7') is evaluated at momentum
k, which is obtained by solving 7" — kvy, /2 = 0 . The chemical potential is obtained by inverting the above relation for p(T") :

pw~Tlnp—TIn f(T)
From this value of © we can derive the entropy density using
Ts ~ anﬁk + pT — up
k
Using the stationary phase method:
272
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where kg is the solution of

—1/2

(2)

This provides a first approximation to the energy and together with the thermodynamic identity gives the pressure.

1.7 Example source code
1.7.1 Example list

* Cold neutron star example

1.7.2 Cold neutron star example

/* Example: ex_cold_nstar.cpp

This example solves the TOV equations using class cold_nstar using a
relativistic mean-field EOS from class rmf_eos.

*/

#include <o2scl/collection.h>

#include <o2scl/text_file.h>

#include <o2scl/cold_nstar.h>

#include <o2scl/rmf_eos.h>

#include <o2scl/test_mgr.h>

using namespace std;
using namespace o2scl;

// For hc_mev_fm
using namespace o2scl_const;

int main(void) {
cout.setf(ios::scientific);

test_mgr t;
t.set_output_level(1l);

def_err_hnd.set_mode (0) ;
cold_nstar nst;

// Initialize EOS
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rmf_eos rmf;

rmf.load ("NL3");

rmf.saturation();

cout << "Saturation density: " << rmf.n0 << endl;

cout << "Binding energy: " << rmf.eoaxhc_mev_fm << endl;
cout << "Effective mass: " << rmf.msom << endl;

cout << "Symmetry energy: " << rmf.esymxhc_mev_fm << endl;
cout << "Compressibility: " << rmf.compxhc_mev_fm << endl;

// Compute EOS, include muons
nst.include_muons=true;
nst.set_eos (rmf) ;
nst.calc_eos () ;

table &te=nst.get_eos_results();

// Output EOS results to a file

collection coj;

text_out_file xtof=new text_out_file("ex_cold_nstar.out");
co.out_one (tof, "table", "tov", &te);

delete tof;

// Compute mass vs. radius
nst.calc_nstar();
table &tr=nst.get_tov_results();

cout << "Maximum mass: " << tr.max("gm") << endl;
cout << "Radius of maximum mass star: "

<< tr.get ("r",tr.lookup("gm",tr.max("gm"))) << endl;
cout << "Central baryon density of maximum mass star: ";
cout << tr.get ("nb",tr.lookup("gm",tr.max("gm"))) << endl;
t.report();
return 0;

}
// End of example

1.8 Other Todos

Idea for future

Right now, the equation of state classes depend on the user to input the correct value of non_interacting for the particle
inputs. This is not very graceful...
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2 Ideas for future development

page Main Page Right now, the equation of state classes depend on the user to input the correct value of non_interacting for
the particle inputs. This is not very graceful...

Class apr_eos There might be room to improve the testing of the finite temperature part a bit.

Class apr_eos There is some repetition between calc_e() and calc_e_temp() that possibly could be removed.
Class bps_eos Can the pressure be made to match more closely?

Class bps_eos Convert to a hadronic_eos object and offer an associated interface?

Class cfl_njl_eos This class internally mixes ovector, omatrix, gsl_vector and gsl_matrix objects in a confusing and non-optimal
way. Fix this.

Class cfl_njl_eos Allow user to change derivative object? This isn’t possible right now because the stepsize parameter of the
derivative object is used.

Class cold_nstar Ensure that the adiabatic index of the central density is greater than 4/3

Class cold_nstar Warn if the EOS becomes pure neutron matter.

Class ddc_eos Implement the finite temperature EOS properly.

Class gen_potential_eos Calculate the chemical potentials analytically

Class hadronic_eos Could write a function to compute the "symmetry free energy" or the "symmetry entropy"

Class nse_eos Right now calc_density() needs a very good guess. This could be fixed, probably by solving for the log(mu/T)
instead of mu.

Class rmf_delta_eos Finish the finite temperature EOS

Global rmf_eos::calc_e(fermion &ne, fermion &pr, thermo &Ith) Improve the operation of this function when the proton den-
sity is zero.

Global rmf_eos::calc_e(fermion &ne, fermion &pr, thermo &lIth, double &sig, double &ome, double &rho) Improve the op-
eration of this function when the proton density is zero.

Class tov_buchdahl_eos Figure out what to do with the buchfun() function
Class tov_solve e Turn numbers in max() function into variables

Global tov_solve::bio Is this really required?
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3 Todo List

Global cfl_njl_eos::calc_eq_temp_p(quark &u, quark &d, quark &s, double &qq1, double &qq2, double &qq3, double &gap1, double
It surprises me that n3 is not -res[11]. Is there a sign error in the color densities?

Global cfl_njl_eos::gapped_eigenvalues(double m1, double m2, double Imom, double mul, double mu2, double tdelta, double lam[4], do
Only the "ms" part of the quarks is referenced, so we should rewrite to use only double’s as function arguments, and avoid
passing pointers to quark objects.

Global ddc_eos::calc_eq_e(fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double &f3, therme
Is the thermodynamic identity is satisfied even when the field equations are not solved? Check this.

Global hadronic_eos::set_sat_deriv2(deriv< bool, funct< bool > > &de) Document the distinction between this and set_sat_-
deriv().

Class rmf_eos * The number of couplings is getting large, maybe new organization is required.
» Check the formulas in the "Background" section
¢ QOverload hadronic_eos::fcomp() with an exact version
* Fix calc_p() to be better at guessing

e There are two calc_e() functions that solve. One is specially designed to work without a good initial guess. Possibly the
other calc_e() function should be similarly designed?

* Make sure that this class properly handles particles for which inc_rest_mass is true/false

* It might be nice to remove explicit reference to the meson masses in functions which only compute nuclear matter since
they are unnecessary. This might, however, demand redefining some of the couplings.

¢ The error handler is called sometimes when calc_e() is used to compute pure neutron matter. This should be fixed.

Global rmf_eos::calc_e(fermion &ne, fermion &pr, thermo &Ith, double &sig, double &ome, double &rho) Rename  this
function to distinguish between calc_e()’s

Global rmf_eos::n_charge Should use hadronic_eos::proton_frac instead?

Global rmf_eos::check_naturalness(rmf_eos &re) I may have ignored some signs in the above, which are unimportant for this
application, but it would be good to fix them for posterity.

Global rmf_eos::fix_saturation(double guess_cs=4.0, double guess_cw=3.0, double guess_b=0.001, double guess_c=-0.001) .
Fix this for zm_mode=true

¢ Ensure solver is more robust

Global rmf_eos::fkprime_fields(double sig, double ome, double nb, double &Kk, double &kprime) Does this work? Fix
fkprime_fields() if it does not.

Global schematic_eos::set_a_from_mstar(double u_msom, double mnuc) This was computed in schematic_sym.nb, which
might be added to the documentation?
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Class skyrme_eos * Make sure that this class properly handles particles for which inc_rest_mass is true/false
* What about the spin-orbit units?
* Need to write a function that calculates saturation density?
* Remove use of mnuc in calparfun()?
* The compressibility could probably use some simplification
* Make sure the finite-temperature part is properly tested

* The testing code doesn’t work if err_mode is 2, probably because of problems in load().

Global skyrme_eos::calpar(double gt0=-10.0, double gt3=70.0, double galpha=0.2, double gt1=2.0, double gt2=-1.0) Does
this work for both ’a’ and ’b’ non-zero?

Global skyrme_eos::calpar(double gt0=-10.0, double gt3=70.0, double galpha=0.2, double gt1=2.0, double gt2=-1.0)
Compare to similar formulae from Margueron(02

Global skyrme_eos::landau_neutron(double n0, double m, double &f0, double &g0, double &f1, double &gl) This needs to
be checked

Global skyrme_eos::landau_nuclear(double n0, double m, double &f0, double &g0, double &f0p, double &g0p, double &f1, double &gl
This needs to be checked.

Class tov_buchdahl_eos Fix the reference above

Class tov_solve * The error handler is called in tov_solve()derivs for pressures less than the minimum even in normal circum-
stances. This should be fixed, so that errors are more rare

* baryon mass doesn’t work for fixed() (This may be fixed. We should make sure it’s tested.)
¢ Combine maxoutsize and kmax?
* Document column naming issues

* Document surface gravity and redshift

4 Bug List

Class gen_potential_eos The BGBD EOS doesn’t work and the effective mass for the GBD EOS doesn’t work

5 Data Structure Documentation

5.1 apr4_eos Class Reference

A version of apr_eos to separate potential and kinetic contributions.
#include <symé4_eos.h>

Inheritance diagram for apr4_eos::
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| e0s |

T

| hadronic_eos |

T

| hadronic_eos _temp |

T

| hadronic_eos_temp_eden |

T

| apr_eos | | sym4_eos base

5.1.1 Detailed Description

A version of apr_eos to separate potential and kinetic contributions.

References:
Created for Steiner06.

Definition at line 119 of file sym4_eos.h.

Public Member Functions
e virtual int calc_e_sep (fermion &ne, fermion &pr, double &ed_kin, double &ed_pot, double &mu_n_kin, double &mu_p_-

kin, double &mu_n_pot, double &mu_p_pot)

Compute the potential and kinetic parts separately.

The documentation for this class was generated from the following file:

e sym4_eos.h

5.2 apr_eos Class Reference

EOS from Akmal, Pandharipande, and Ravenhall.
#include <apr_eos.h>

Inheritance diagram for apr_eos::
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| e0s |

T

| hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos temp_eden |

T

| apr_eos |

T

| aprd_eos |

5.2.1 Detailed Description

EOS from Akmal, Pandharipande, and Ravenhall.
Taken from Akmal98.
The chemical potentials include the rest mass energy and the energy density includes the rest mass energy density.

Note that APR seems to have been designed to be used with non-relativistic neutrons and protons with equal masses of 939 MeV.
This gives a saturation density very close to 0.16.

The Hamiltonian is:
HAPR = Hkin + Hpot

R K2
Hiin = <2m + (p3 + (1L =) ps) ne_pm) Tn + (2m (p3 + xps) ne""‘”) ™

Hpor = g1 (1= (1= 20)) + 9 (1 — 20)°
The following are definitions for g; in the low-density phase (LDP) or the high-density phase (HDP):

2.2
g1.Lpp = —n’ (pl + pan + pen® + (p1o + pun) e 7" )
2.2
92,LDP = —112 (p12/n + p7 + psn + pise Pgn )
91.EDP = g1.LDP — 1 (P17 (n = p1o) + p21 (n — p1o)? eplS("‘Pw))

2 o (n—
92,HDP = 92,LDP — n? (p15 (n — p20) + p1a (n — p2o) epro(n pQO))

The variables v, and v, contain the expressions (—u,, + V;,)/T and (—u, + V,)/T respectively, where V' is the potential part of
the single particle energy for particle i (i.e. the derivative of the Hamiltonian w.r.t. density while energy density held constant).
Equivalently, v, is just —k%, /2m*.

The selection between the LDP and HDP is controlled by pion. The default is to use the LDP at densities below 0.16 fm 3, and for
larger densities to just use whichever minimizes the energy.

The finite temperature approximations from Prakash97 are used in testing.
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Note:

Since this EOS uses the effective masses and chemical potentials in the fermion class, the values of part::non_interacting for
neutrons and protons are set to false in many of the functions.

Idea for future

There might be room to improve the testing of the finite temperature part a bit.

Idea for future

There is some repetition between calc_e() and calc_e_temp() that possibly could be removed.

Definition at line 119 of file apr_eos.h.

Choice of phase

* static const int best =0
use LDP for densities less than 0.16 and for higher densities, use the phase which minimizes energy (default)
* static const int Idp = 1
LDP (no pion condensation,).
* static const int hdp =2
HDP (pion condensation).
* int pion
Choice of phase (default best).
* int last_phase ()
Return the phase of the most recent call to calc_e().

Public Member Functions

e virtual int calc_e (fermion &n, fermion &p, thermo &th)
Equation of state as a function of density.
* virtual int calc_temp_e (fermion_T &n, fermion_T &pr, const double temper, thermo &th)
Equation of state as a function of densities.
* double fcomp (double nb)
Compute the compressibility.
* double fesym_diff (double nb)
Calculate symmetry energy of matter as energy of neutron matter minus the energy of nuclear matter.
¢ void select (int model_index)
Select model.
* int gradient_qij2 (double nn, double np, double &qnn, double &qnp, double &qpp, double &dqnndnn, double &dqnndnp,
double &dqgnpdnn, double &dqnpdnp, double &dqppdnn, double &dqppdnp)
Calculate Q’s for semi-infinite nuclear matter.
* double get_par (int n)
Get the value of one of the parameters.
* int set_par (int n, double x)
Set the value of one of the parameters.
* virtual const char * type ()
Return string denoting type ("apr_eos").

Data Fields

¢ nonrel_fermion def _nr_neutron
Default nonrelativistic neutron.
* nonrel_fermion def_nr_proton
Default nonrelativistic proton.
* bool parent_method
If true, use the methods from hadronic_eos for fcomp().
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Protected Attributes

 double * par
Storage for the parameters.
* int lp
An integer to indicate which phase was used in calc_e().
* int choice
The variable indicating which parameter set is to be used.

5.2.2 Member Function Documentation

5.2.2.1 double fcomp (double nb) [virtuall
Compute the compressibility.

See general notes at hadronic_eos::fcomp(). This computes the compressibility (at fixed proton fraction = 0.5) exactly, unless
parent_method is true in which case the derivative is taken numerically in hadronic_eos::fcomp().

Reimplemented from hadronic_eos.

5.2.2.2 double fesym_diff (double nb) [virtuall
Calculate symmetry energy of matter as energy of neutron matter minus the energy of nuclear matter.

This function returns the energy per baryon of neutron matter minus the energy per baryon of nuclear matter. This will deviate
significantly from the results from fesym() only if the dependence of the symmetry energy on ¢ is not quadratic.

Reimplemented from hadronic_eos.

5.2.2.3 int gradient_qij2 (double nn, double np, double & gnn, double & gnp, double & gpp, double & dgnndnn, double
& dgnndnp, double & dgnpdnn, double & dgnpdnp, double & dgppdnn, double & dgppdnp)

Calculate Q’s for semi-infinite nuclear matter.
For general discussion, see the documentation to hadronic_eos::qs().

For APR, we set 1 = xo = 0 so that QQ; = P;/2 and then

1
P = <2P3 Ps) e P
1 —pan
P, = oPstps|e P
This gives
1 —pap
Qnn = 1° [—6ps — pa(ps — 2ps)(nn + 2ny)]
1 _
Qnp = 3¢ PP [4(ps — 4ps) — 3pa(p3 — 2ps5) (nn + np)]
1 _
Qpp = 1° PaP [—6ps — pa(p3 — 2ps)(np + 2np))

See the Mathematica notebook

doc/o2scl/extras/apr_eos.nb
doc/o2scl/extras/apr_eos.ps
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5.2.2.4 void select (int model_index)

Select model.

Valid values for model_index are:

1 - A18+UIXx*+deltav (preferred by Akmal, et. al. - this is the default)
2 - A18+UIXx

3 - Al18+deltav

4-A18

If any other integer is given, A18+UIXx+deltav is assumed.

5.2.3 Field Documentation

5.2.3.1 bool parent_method

If true, use the methods from hadronic_eos for fcomp().

This can be set to true to check the difference in the compressibility wbetween the exact expressions and the numerical values from

class hadronic_eos.
Definition at line 276 of file apr_eos.h.

The documentation for this class was generated from the following file:

e apr_eos.h

5.3 bag_eos Class Reference

Naive bag model EOS.
#include <bag_eos.h>

Inheritance diagram for bag_eos::

5.3.1 Detailed Description

Naive bag model EOS.

An equation of state with P = —B + P, pg + P4 rc + Ps, re Where P; p¢ is the Fermi gas contribution from particle ¢ and B is a

density- and temperature-independent bag constant.

The finite temperature functions run the zero temperature code if the temperature is less than or equal to 0.

Definition at line 47 of file bag_eos.h.
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Public Member Functions

e virtual int calc_p (quark &u, quark &d, quark &s, thermo &th)
Calculate equation of state as a function of chemical potentials.

* virtual int calc_e (quark &u, quark &d, quark &s, thermo &th)
Calculate equation of state as a function of density.

e virtual int calc_temp_p (quark &u, quark &d, quark &s, const double temper, thermo &th)
Calculate equation of state as a function of the chemical potentials.

* virtual int calc_temp_e (quark &u, quark &d, quark &s, const double temper, thermo &th)
Calculate equation of state as a function of the densities.

* virtual const char * type ()
Return string denoting type ("bag_eos").

Data Fields

* double bag_constant
The bag constant in fm ™" (default 200/ (hc)).

5.3.2 Member Function Documentation

5.3.2.1 virtual int calc_temp_e (quark & u, quark & d, quark & s, const double temper, thermo & th) [virtual]
Calculate equation of state as a function of the densities.
This function returns zero (success) unless the call to quark::pair_density() fails.

Reimplemented from quark_eos.

5.3.2.2 virtual int calc_temp_p (quark & u, quark & d, quark & s, const double temper, thermo & th) [virtual]
Calculate equation of state as a function of the chemical potentials.

This function returns zero (success) unless the call to quark::pair_mu() fails.

Reimplemented from quark_eos.

The documentation for this class was generated from the following file:

* bag_eos.h

5.4 bps_eos Class Reference

Baym-Pethick-Sutherland equation of state.
#include <bps_eos.h>

Inheritance diagram for bps_eos::

bps_eos
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5.4.1 Detailed Description

Baym-Pethick-Sutherland equation of state.

This calculates the equation of state of electrons and nuclei using the approach of Baym71 (based on the discussion in Shapiro83)
between about 8 x 105 g/cm?® and 4.3 x 10'* g/cm3. Below these densities, more complex Coulomb corrections need to be
considered, and above these densities, neutron drip is important.

The default mass formula is semi-empirical

M(A,Z) = (A—2Z)m,+ Z(m,+me) —15.76A — 17.81A%/3
—0.712% /A3 —94.8 /A (A)2 — Z)* + Epair

where
Epair = £39/A3/4

if the nucleus is odd-odd (plus sign) or even-even (minus sign) and El,,;, is zero for odd-even and even-odd nuclei. The nuclei
are assumed not to contribute to the pressure. The electronic contribution to the pressure is assumed to be equal to the Fermi gas
contribution plus a "lattice” contribution

ep = —1.4447%/3¢2n/3

This is Eq. 2.7.2 in Shapiro83. The rest mass energy of the nucleons is included in the energy density.

The original results from Baym71 are stored as a table in file data/o2scl/bps.eos. The testing code for this class compares
the calculations to the table and matches to within .2 percent for the energy density and 9 percent for the pressure (for a fixed baryon
number density).

Idea for future

Can the pressure be made to match more closely?

Idea for future

Convert to a hadronic_eos object and offer an associated interface?

Definition at line 83 of file bps_eos.h.

Public Member Functions

* virtual int calc_density (double barn, thermo &th, int &Z, int &A)
Calculate the equation of state as a function of the baryon number density barn.
e virtual int calc_pressure (thermo &th, double &barn, int &Z, int &A)
Calculate the equation of state as a function of the pressure.
* virtual double lattice_energy (int Z)
The electron lattice energy.
* virtual fermion * get_electron ()
Get a pointer to the electron.
e virtual double mass_formula (int Z, int A)
The mass formula.
* virtual const char * type ()
Return string denoting type ("bps_eos").
e int set_mass_formula (nuclear_mass &nm)
Set the nuclear mass formula to be used.
* int calc_density_fixedA (double barn, thermo &th, int &Z, int A)

Compute the ground state assuming a fixed atomic number.
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Data Fields

e semi_empirical_mass def_mass
Default mass formula.

¢ fermion e
The electron thermodynamics.

Protected Member Functions

* virtual int eq274 (size_t nv, const ovector_base &nx, ovector_base &ny, int &Zt)
Solve Equation 2.7.4 for a given pressure.

* double gibbs (int Z, int A)
The Gibbs free energy.

* double energy (double barn, int Z, int A)
The energy density.

Protected Attributes

¢ gsl_mroot_hybrids< int, mm_funct< int > > gs
A solver to solve Eq. 2.7.4.

* nuclear_mass * nmp
The nuclear mass formula.

5.4.2 Member Function Documentation

5.4.2.1 virtual int calc_density (double barn, thermo & th, int & Z, int & A) [virtual]
Calculate the equation of state as a function of the baryon number density barn.

This calculates the equation of state as a function of the baryon number density in fm >, returning the representative nucleus with
proton number Z and atomic number A. The pressure and energy density are returned in th in fm™?.

5.4.2.2 virtual int calc_pressure (thermo & th, double & barn, int & Z, int & A) [virtual]
Calculate the equation of state as a function of the pressure.

This calculates the equation of state as a function of the pressure, returning the representative nucleus with proton number Z and
atomic number A and the baryon number density barn in fm . The energy density is also returned in fm ™ in th.

5.4.2.3 virtual double mass_formula (int Z, int A) [virtual]
The mass formula.

The nuclear mass without the contribution of the rest mass of the electrons. The electron rest mass energy is included in the electron
thermodynamics elsewhere.

5.4.3 Field Documentation

5.4.3.1 fermione

The electron thermodynamics.

Note:

The electron rest mass is included by default in the energy density and the chemical potential
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Definition at line 149 of file bps_eos.h.

The documentation for this class was generated from the following file:

* bps_eos.h

5.5 cfl6_eos Class Reference

CFL NJL EOS with a color-superconducting ’t Hooft interaction.
#include <cfl6_eos.h>

Inheritance diagram for cfl6_eos::

cfl_njl_eos

5.5.1 Detailed Description

CFL NJL EOS with a color-superconducting 't Hooft interaction.

Beginning with the Lagrangian:
L= Lpirac + Lnjr + Lrioost + Lsc + Lscs

Lpirac =4 (i0 —m — p7°) q
8
Ly =Gs Z {(l?/\aQ)Q - (‘?)\GVE)‘I)Q}
a=0

LitHoost = Gp [detrq (1 —~°) g+ detyq (1+7°) ¢
Lsc =Gpig (dz‘ai’yséfij%amqjcg) (Qmiﬁsgm%éwqgs)

Lsce = Kp (Giaire7%*¢55) (usiv® €™ €45,.) (i)

We can simplify the relevant terms in Ly sr.:

2

Lxgn = G |(au)? + (dd)* + (55)°]

and in E’tHooft: B
Lny=Gp (ﬂuddEs)
Using the definition:
AR = <(ji'y5eeqc>
and the ansatzes:
(0142)(q394) — Q192 (G3q4) + G394 (T1G2) — (0192) (G394)
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(0162)(3394)(0596) — G1a2 (G394) (G5q6) + G3G4 (Q1G2) (T596) + G546 (T102) (G394) — 2 (q142) (G3G4) (T596)
for the mean field approximation, we can rewrite the Lagrangian
Lot = 2Gs [(au) () + (dd) (dd) + (5s) (55) — (au)? — (dd)” — <§s>2}
Litioort = —2Gp [(uu) (uu) (5s) + (dd) (au) (5s) + (5s) (au) (dd) — 2 (uu) (dd) (5s)]
[-:SC _ GDIQ [A o (q&SZ’YSCka 66'yq7n€) + ( Z’}/5€”k aﬁ'y ) Ak'yf Ak’yAk'yT]
Lsce = Kp [((ijan) AFY A™eT 4 (q 2755”" ozﬁ’)’ )AmeT <QmEan>]
(

+Kp [A (Gesin® e €. ) (Gmetnn) — ZA’”A’"ET (Gmednn))

If we make the definition A = 2Gp QA

References:
Created for Steiner05.
Definition at line 187 of file cfl6_eos.h.

Public Member Functions

e virtual int calc_eq_temp_p (quark &u, quark &d, quark &s, double &qql, double &qq2, double &qq3, double &gapl,
double &gap2, double &gap3, double mu3, double mu8, double &n3, double &n8, thermo &qgb, const double temper)
Calculate the EOS.
* virtual int integrands (double p, double res[ ])
The momentum integrands.
e virtual int test_derivatives (double Imom, double mu3, double mu8, test_mgr &t)
Check the derivatives specified by eigenvalues().

e virtual int eigenvalues6 (double Imom, double mu3, double mu8, double egv[36], double dedmuu[36], double dedmud[36],
double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double dedd[36], double
deds[36], double dedmu3[36], double dedmu8[36])

Calculate the energy eigenvalues and their derivatives.

e virtual int make_matrices (double Imom, double mu3, double mu8, double egv[36], double dedmuu[36], double dedmud[36],
double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double dedd[36], double
deds[36], double dedmu3[36], double dedmu8[36])

Construct the matrices, but don’t solve the eigenvalue problem.

* virtual const char * type ()

Return string denoting type ("cfl6_eos").

Data Fields
* double KD
The color superconducting 't Hooft coupling (default 0).

¢ double kdlimit
The absolute value below which the CSC 't Hooft coupling is ignored(default 10~°).

Protected Member Functions

e int set_masses ()
Set the quark effective masses from the gaps and the condensates.
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Protected Attributes

e omatrix_cx iprop6
Storage for the inverse propagator.
e omatrix_cx eivec6
The eigenvectors.
e omatrix_cx dipdgapu
The derivative wrt the ds gap.
* omatrix_cx dipdgapd
The derivative wrt the us gap.
* omatrix_cx dipdgaps
The derivative wrt the ud gap.
* omatrix_cx dipdqqu
The derivative wrt the up quark condensate.
* omatrix_cx dipdqqd
The derivative wrt the down quark condensate.
e omatrix_cx dipdqqgs
The derivative wrt the strange quark condensate.
* ovector eval6
Storage for the eigenvalues.
* gsl_eigen_hermv_workspace * w6
GSL workspace for the eigenvalue computation.

Static Protected Attributes

* static const int mat_size = 36
The size of the matrix to be diagonalized.

Private Member Functions

¢ cfl6_eos (const cfl6_eos &)
* cfl6_eos & operator= (const cfl6_eos &)

5.5.2 Member Function Documentation

5.5.2.1 virtualint calc_eq_temp_p (quark & u, quark & d, quark & s, double & gq1, double & gq2, double & gq3, double
& gapl, double & gap2, double & gap3, double mu3, double mu8, double & n3, double & n8, thermo & gb, const double
temper) [virtuall]

Calculate the EOS.

Calculate the EOS from the quark condensates. Return the mass gap equations in gql, gg2, gg3, and the normal gap equations in
gapl, gap2, and gap3.

Using fromgg=t rue as in nambujl_eos and nambujl_temp_eos does not work here and will return an error.

If all of the gaps are less than gap_limit, then the nambujl_temp_eos::calc_temp_p() is used, and gapl, gap2, and gap3 are set to
equal u.del, d.del, and s . del, respectively.

Reimplemented from cfl_njl_eos.

5.5.2.2 virtual int eigenvalues6 (double Imom, double mu3, double mu8, double egv[36], double dedmuu[36], dou-
ble dedmud[36], double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double
dedd[36], double deds[36], double dedmu3[36], double dedmu8[36]) [virtuall]

Calculate the energy eigenvalues and their derivatives.
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Given the momentum mom, and the chemical potentials associated with the third and eighth gluons (mu3 and mu8), this computes
the eigenvalues of the inverse propagator and the assocated derivatives.

Note that this is not the same as cfl_njl_eos::eigenvalues() which returns dedmu rather dedgqu.

5.5.2.3 virtual int make_matrices (double /Imom, double mu3, double mu8, double egv[36], double dedmuu[36], dou-
ble dedmud[36], double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double
dedd[36], double deds[36], double dedmu3[36], double dedmu8[36]) [virtuall]

Construct the matrices, but don’t solve the eigenvalue problem.
This is used by check_derivatives() to make sure that the derivative entries are right.

The documentation for this class was generated from the following file:

e cfl6_eos.h

5.6 cfl_njl_eos Class Reference

Nambu Jona-Lasinio model with a schematic CFL di-quark interaction at finite temperature.
#include <cfl_njl_eos.h>

Inheritance diagram for cfl_njl_eos::

cfl_njl_eos

5.6.1 Detailed Description

Nambu Jona-Lasinio model with a schematic CFL di-quark interaction at finite temperature.
The variable BO must be set before use.

The original Lagrangian is

L= EDiraC + £4—fermion + EG—ferrnion + £C’SCl + ECS’CQ

Lbirac = Gia (100;003 — Mijdas — Wij, ap’) €8

8

AC47fermi0n = GS Z [(CYAC}Q)2 + (6175 (;Q)2:|
a=0
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L6 —termion = —Gp [detij Gia (1 +175) ¢ + detij Gia (1 —i7v5) ¢j8] 0ap

Lcsc1 = Gpig Z Z [(@m@jk%mqjcg) (Qicfafei/j'kﬁa'ﬁwqg‘/ﬂ')]
kv

Lcosc2 = Gpiq Z Z [(Giaivs€ijheaprass) (@5aivseineapyip )]
kv

where p is the quark number chemical potential. couplings G's, G p, and G pg ultra-violet three-momentum cutoff, A

The thermodynamic potential is
Q(.uia <QQ>L ) <qQ>i ,T) = Qvac + Qstat + Q0

where ¢ runs over all nine (three colors times three flavors) quarks. We assume that the condensates are independent of color and that
the quark chemical potentials are of the form pq = pFiavor(Q) + Hcolor(q) With

fred = H3 + /L8/\/§ Hgreen = —3 + ,US/\/§ Hblue = _2ﬂ8/\/§

With these assumptions, the thermodynamic potential as given by the function thd_potential(), is a function of 12 variables
Q(,uuy Kdy s> 435 U8, <12u> ) <Jd> ) <§3> ) <ud> ) <US> ) <d5> 7T)

The individual terms are

1 d3p Ai .
Qm:_f/ [1—|—T1n 14 e /T ]
2J) (2n)’ ; 2 ( )
5 T Sl
Qac = 2G5 Y {Gias)* +4Cp {au) (dd) (s5) + Y Y oo
i=u,d,s kv

where \; are the eigenvalues of the (72 by 72) matrix (calculated by the function eigenvalues())
_ [ 75— Mir® + pia Air 5 C
D= A A0 07T . = 0
1Ay Cys =T D+ Miy” — pia
and C is the charge conjugation matrix (in the Dirac representation).
The values of the various condensates are usually determined by the condition
o0 o0

@), 0 (aq); 0

Note that setting fixed_mass to t rue and setting all of the gaps to zero when gap_1imit is less than zero will reproduce an analog
of the bag model with a momentum cutoff.

The variable nambujl_eos::fromqq is automatically set to true in the constructor, as computations with fromgg=false are not
implemented.

Idea for future

This class internally mixes ovector, omatrix, gsl_vector and gsl_matrix objects in a confusing and non-optimal way. Fix this.

Idea for future

Allow user to change derivative object? This isn’t possible right now because the stepsize parameter of the derivative object is
used.
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References:
Created for Steiner02.

Definition at line 208 of file cfl_njl_eos.h.

Public Member Functions

e virtual int set_parameters (double lambda=0.0, double fourferm=0.0, double sixferm=0.0, double fourgap=0.0)
Set the parameters and the bag constant 'B0’.
e virtual int calc_eq_temp_p (quark &u, quark &d, quark &s, double &qql, double &qq2, double &qq3, double &gapl,
double &gap2, double &gap3, double mu3, double mu§, double &n3, double &n8, thermo &qb, const double temper)
Calculate the EOS.
e virtual int test_derivatives (double Imom, double mu3, double mus§, test_mgr &t)
Check the derivatives specified by eigenvalues().

e virtual int eigenvalues (double Imom, double mu3, double mu8, double egv[36], double dedmuu[36], double dedmud[36],
double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double dedd[36], double
deds[36], double dedmu3[36], double dedmu8[36])

Calculate the energy eigenvalues as a function of the momentum.

* int set_quartic (quartic_real_coeff &q)

Set the routine for solving quartics.
* int test_integration (test_mgr &t)
Test the integration routines.

* int test_normal_eigenvalues (test_mgr &t)

Test the routine to compute the eigenvalues of non-superfluid fermions.

* int test_gapped_eigenvalues (test_mgr &t)

Test the routine to compute the eigenvalues of superfluid fermions.

* virtual const char * type ()

Return string denoting type ("cfl_njl_eos").

Data Fields

* double eq_limit
The equal mass threshold.
* bool integ_test
Set to true to test the integration (default false).
 cern_quartic_real_coeff def_quartic
The default quartic routine.
¢ double gap_limit
Smallest allowable gap (default 0.0).
* bool zerot
If this is true, then finite temperature corrections are ignored (default false).
¢ bool fixed_mass
Use a fixed quark mass and ignore the quark condensates.
¢ bool color_neut
If true, then ensure color neutrality.
¢ double GD
Diquark coupling constant (default 3 G/4).
* double inte_epsabs
The absolute precision for the integration (default 10™% ).
* double inte_epsrel
The relative precision for the integration (default 10™* ).
* size_t inte_npoints
The number of points used in the last integration (default 0).
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Protected Member Functions

e virtual int integrands (double p, double res[ ])
The integrands.
* int normal_eigenvalues (double m, double Imom, double mu, double lam[2], double dldmu[2], double dldm[2])
Compute ungapped eigenvalues and the appropriate derivatives.
* int gapped_eigenvalues (double m1, double m2, double Imom, double mul, double mu2, double tdelta, double lam[4], double
dldmul[4], double dldmu2[4], double dldm1[4], double dldm2[4], double dldg[4])
Treat the simply gapped quarks in all cases gracefully.

For the integration

¢ double rescale_error (double err, const double result_abs, const double result_asc)
The error scaling function for integ_err.

* int integ_err (double a, double b, const size_t nr, ovector &res, double &err2)
A new version of gsl_inte_qng to integrate several functions at the same time.

Protected Attributes

¢ double temper

Temperature.
* double smu3

3rd gluon chemical potential
* double smu8

8th gluon chemical potential

Numerical methods

e quartic_real_coeff x quartic
The routine to solve quartics.

For computing eigenvalues

* omatrix_cx iprop

Inverse propagator matrix.
e omatrix_cx eivec

The eigenvectors.
* omatrix_cx dipdgapu

The derivative of the inverse propagator wrt the ds gap.
* omatrix_cx dipdgapd

The derivative of the inverse propagator wrt the us gap.
* omatrix_cx dipdgaps

The derivative of the inverse propagator wrt the ud gap.
* ovector eval

The eigenvalues.
* gsl_eigen_hermv_workspace * w

Workspace for eigenvalue computation.

Private Member Functions

¢ cfl_njl_eos (const cfl_njl_eos &)
* cfl_njl_eos & operator= (const cfl_njl_eos &)
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5.6.2 Member Function Documentation

5.6.2.1 virtual int calc_eq_temp_p (quark & u, quark & d, quark & s, double & gqI, double & gq2, double & g¢3, double
& gapl, double & gap2, double & gap3, double mu3, double mu8, double & n3, double & n8, thermo & gb, const double
temper) [virtuall]

Calculate the EOS.

Calculate the EOS from the quark condensates in u.gq, d.gqg and s . gqg. Return the mass gap equations in ggql, gg2, gg3, and
the normal gap equations in gapl, gap2, and gap3.

Using fromgg=false as in nambujl_eos and nambujl_eos does not work here and will return an error. Also, the quarks must be
set through quark_eos::quark_set() before use.

If all of the gaps are less than gap_limit, then the nambujl_eos::calc_temp_p() is used, and gapl, gap2, and gap3 are set to equal
u.del, d.del, and s.del, respectively.
Todo

It surprises me that n3 is not -res[11]. Is there a sign error in the color densities?

Reimplemented in cfl6_eos.

5.6.2.2 virtual int eigenvalues (double Imom, double mu3, double mu8, double egv[36], double dedmuu[36], double
dedmud[36], double dedmus[36], double dedmu[36], double dedmd[36], double dedms[36], double dedu[36], double
dedd[36], double deds[36], double dedmu3[36], double dedmu8[36]) [virtuall]

Calculate the energy eigenvalues as a function of the momentum.

Given the momentum mom, and the chemical potentials associated with the third and eighth gluons (mu3 and mu8), the energy
eigenvalues are computed in egv[0] ... egv[35].

5.6.2.3 int gapped_eigenvalues (double mI, double m2, double Imom, double mul, double mu2, double tdelta, double
lam[4], double didmul[4], double dldmu2[4], double didmi[4], double didm2[4], double dldg[4]) [protected]

Treat the simply gapped quarks in all cases gracefully.

This function uses the quarks g1 and g2 to construct the eigenvalues of the inverse propagator, properly handling the either zero or
finite quark mass and either zero or finite quark gaps. In the case of finite quark mass and finite quark gaps, the quartic solver is
used.

The chemical potentials are separated so we can add the color chemical potentials to the quark chemical potentials if necessary.

This function is used by eigenvalues(). It does not work for the "ur-dg-sb" set of quarks which are paired in a non-trivial way.

Todo

Only the "ms" part of the quarks is referenced, so we should rewrite to use only double’s as function arguments, and avoid
passing pointers to quark objects.

5.6.2.4 virtual int integrands (double p, double res[]) [protected, virtuall]

The integrands.

¢ res[0] is the thermodynamic potential, €2
e res[l]isd — Q/dT
o res[2] is dSY/dp,
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o res[3]is dQ2/dpug

o res[4]is d2/d s

* res[5] is dQ2/dm,,

* res[6] is d2/dmy

o res[7]is d2/dm

o res[8]is d2/dA s
o res[9] is d2/dA s
o res[10] is d2/dA 4
o res[11]is d2/dus

o res[12]is d2/dus

Reimplemented in cfl6_eos.

5.6.2.5 virtual int set_parameters (double lambda = 0 . 0, double fourferm = 0.0, double sixferm = 0.0, double fourgap =
0.0) [virtual]

Set the parameters and the bag constant "BO’.

This function allows the user to specify the momentum cutoff, 1ambda, the four-fermion coupling fourferm, the six-fermion
coupling from the ’t Hooft interaction sixferm, and the color-superconducting coupling, fourgap. If 0.0 is given for any of the
values, then the default is used (A = 602.3/(hc), G = 1.835/A% K = 12.36/A%).

If the four-fermion coupling that produces a gap is not specified, it is automatically set to 3/4 G, which is the value obtained from the
Fierz transformation.

The value of the shift in the bag constant nambujl_eos::B0 is automatically calculated to ensure that the vacuum has zero energy
density and zero pressure. The functions set_quarks() and set_thermo() must be used before hand to specify the quark and thermo
objects.

5.6.3 Field Documentation

5.6.3.1 cern_quartic_real_coeff def_quartic
The default quartic routine.
Slightly better accuracy (with slower execution times) can be achieved using gsl_poly_real_coeff which polishes the roots of the

quartics. For example

cfl_njl_eos cfl;
gsl_poly_real_coeff gp;
cfl.set_quartic(gp);

Definition at line 318 of file cfl_njl_eos.h.

5.6.3.2 double gap_limit
Smallest allowable gap (default 0.0).

If any of the gaps are below this value, then it is assumed that they are zero and the equation of state is simplified accordingly. If all of
the gaps are less than gap_limit, then the results from nambujl_eos are used in calc_eq_temp_p(), calc_temp_p() and thd_potential().

Definition at line 342 of file cfl_njl_eos.h.
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5.6.3.3 double GD
Diquark coupling constant (default 3 G/4).
The default value is the one derived from a Fierz transformation. (Buballa04)

Definition at line 368 of file cfl_njl_eos.h.

5.6.3.4 double inte_epsabs
The absolute precision for the integration (default 10~% ).
This is analogous to gsl_inte::epsabs

Definition at line 376 of file cfl_njl_eos.h.

5.6.3.5 double inte_epsrel
The relative precision for the integration (default 10=%).
This is analogous to gsl_inte::epsrel

Definition at line 384 of file cfl_njl_eos.h.

5.6.3.6 size_t inte_npoints
The number of points used in the last integration (default 0).

This returns 21, 43, or 87 depending on the number of function evaluations needed to obtain the desired precision. If it the routine
failes to obtain the desired precision, then this variable is set to 88.

Definition at line 395 of file cfl_njl_eos.h.

5.6.3.7 bool zerot

If this is true, then finite temperature corrections are ignored (default false).

This implements some simplifications in the momentum integration that are not possible at finite temperature.
Definition at line 351 of file cfl_njl_eos.h.

The documentation for this class was generated from the following file:

* cfl_njl_eos.h

5.7 cold_nstar Class Reference

Naive static cold neutron star.

#include <cold_nstar.h>

5.7.1 Detailed Description

Naive static cold neutron star.

This uses hadronic_eos::calc_e() to compute the equation of state of zero-temperature beta-equilibrated neutron star matter and
tov_solve::mvsr() to compute the mass versus radius curve.

The electron and muon are given masses 02scl_fm_const::mass_electron and 02scl_fm_const::mass_muon, respectively.

The energy density and pressure are both calculated in units fm~* and the baryon density in fm 3
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The condition for Urca is the area of the triangle formed by the neutron, proton, and electron Fermi momenta.

Using the definition of the semi-perimeter,
s=(kpn+krp+kre)/2

Heron’s formula gives the triangle area as

@ = \/s(s — kru)(s = kr)(s — bre)

The column in the eos table labeled urca is a? . If this quantity is positive, then direct Urca is allowed.

The squared speed of sound (in units of ¢ ) is calculated by

dpP
2 P
“ T e
and this is placed in the column labeled cs2.
The adabatic index is calculated by
r— dln P
~ dlne

Note that I must be greater than 4 /3 at the center of the neutron star for stability. (This is a necessary, but not sufficient condition.)

Note that if the speed of sound is non-monotonic, then calc_eos() will only record the lowest density for which the EOS becomes
acausal.

There is an example for the usage of this class given in examples/ex_cold_nstar.cpp.

Idea for future

Ensure that the adiabatic index of the central density is greater than 4/3

Idea for future

Warn if the EOS becomes pure neutron matter.

Definition at line 99 of file cold_nstar.h.

Output

¢ double min_bad
The smallest baryon density where the pressure decreases.
¢ double allow_urca
The smallest density where Urca becomes allowed.
* double deny_urca
The smallest density where Urca becomes disallowed.
* double acausal
The density at which the EOS becomes acausal.
* double acausal_pr
The pressure at which the EOS becomes acausal.
¢ double acausal_ed
The energy density at which the EOS becomes acausal.
¢ double solver_tol
Solver tolerance (default 10~4).
* table & get_eos_results ()
Get the eos table (after having called calc_eos()).
* table & get_tov_results ()
Get the results from the TOV (after having called calc_nstar()).




5.7 cold_nstar Class Reference

The thermodynamic information

¢ thermo hb
¢ thermo h
¢ thermo 1

Basic operation

e int set_cos (hadronic_ecos &he)
Set the equation of state.
* int calc_eos (double np_0=0.0)
Calculate the given equation of state.
* double calc_urca (double np_0=0.0)
Compute the density at which the direct Urca process is allowed.
e int calc_nstar ()
Calculate the M vs. R curve.

Public Member Functions

* int set_n_and_p (fermion &n, fermion &p)
Set the neutron and proton.

e int set_tov (tov_solve &ts)
Specify the object for solving the TOV equations.

e int set_root (root< int, funct< int > > &rf)
Set the equation solver for the EOS.

Data Fields

¢ double nb_start
The starting baryon density (default 0.05).
* double nb_end
The final baryon density (default 2.0).
double dnb
The baryon density stepsize (default 0.01).
¢ bool include_muons
If true, include muons (default false).
e eff fermion def n
The default neutron.
« eff_fermion def_p
The default proton.
e tov_solve def _tov
The default TOV equation solver.
e cern_mroot_root< int, funct< int > > def root
The default equation solver for the EOS.
* tov_interp_eos def_tov_eos
Default EOS object for the TOV solver.

Protected Member Functions

* int solve_fun (double x, double &y, int &vp)

Solve to ensure zero charge in (3-equilibrium.
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Protected Attributes

¢ bool eos_set
True if equation of state has been set.
¢ fermion e
The electron.
 fermion mu
The muon.
* hadronic_eos * hep
A pointer to the equation of state.
 fermion * np
A pointer to the neutron.
* fermion * pp
A pointer to the proton.
* tov_solve x tp
A pointer to the TOV object.
* root< int, funct< int > > * rp
A pointer to the solver.
* table eost
Storage for the EOS table.
* double barn
The baryon density.

5.7.2 Member Function Documentation

5.7.2.1 double calc_urca (double np_0 = 0.0)
Compute the density at which the direct Urca process is allowed.

This is faster than using calc_eos() since it does nothing other than computes the critical density. It does not store the equation of
state.

5.7.2.2 int set_eos (hadronic_eos & he) [inline]
Set the equation of state.
This should be set before calling calc_eos().

Definition at line 111 of file cold_nstar.h.

5.7.2.3 int set_n_and_p (fermion & n, fermion & p) [inline]
Set the neutron and proton.

The default objects are of type fermion, with mass 02scl_fm_const::mass_neutron and o2scl_fm_const::mass_proton. These defaults
will give incorrect results for non-relativistic equations of state.

Definition at line 233 of file cold_nstar.h.

5.7.2.4 intset_tov (tov_solve & ts) [inline]
Specify the object for solving the TOV equations.

The default uses the low-density equation of state with tov::verbose=0. In calc_nstar(), the units are set by calling tov_solve::set_-
units().

Definition at line 252 of file cold_nstar.h.
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5.7.3 Field Documentation

5.7.3.1 double acausal
The density at which the EOS becomes acausal.
If this is zero, then the EOS is causal at all baryon densities in the specified range

Definition at line 186 of file cold_nstar.h.

5.7.3.2 double acausal_ed
The energy density at which the EOS becomes acausal.
If this is zero, then the EOS is causal at all baryon densities in the specified range

Definition at line 202 of file cold_nstar.h.

5.7.3.3 double acausal_pr
The pressure at which the EOS becomes acausal.
If this is zero, then the EOS is causal at all baryon densities in the specified range

Definition at line 194 of file cold_nstar.h.

5.7.3.4 double allow_urca
The smallest density where Urca becomes allowed.
If this is zero after calling calc_eos(), then direct Urca is never allowed.

Definition at line 169 of file cold_nstar.h.

5.7.3.5 double deny_urca
The smallest density where Urca becomes disallowed.
If this is zero after calling calc_eos(), then direct Urca is not disallowed at a higher density than it becomes allowed.

Definition at line 178 of file cold_nstar.h.

5.7.3.6 double min_bad

The smallest baryon density where the pressure decreases.

If this is zero after calling calc_eos(), then the pressure does not decrease in the specified range of baryon density
Definition at line 161 of file cold_nstar.h.

The documentation for this class was generated from the following file:

e cold_nstar.h

5.8 ddc_eos Class Reference

Relativistic mean field EOS with density dependent couplings.
#include <ddc_eos.h>

Inheritance diagram for ddc_eos::
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[ s |

T

| hadronic_eos |

T

| hadronic_eos_eden |

| ddc_eos |

5.8.1 Detailed Description

Relativistic mean field EOS with density dependent couplings.
Based on Typel99.

Idea for future

Implement the finite temperature EOS properly.

Definition at line 48 of file ddc_eos.h.

Public Member Functions

e virtual int calc_e (fermion &n, fermion &p, thermo &th)
Equation of state as a function of the densities.
e virtual int calc_eq_e (fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double &f3,
thermo &th)
Equation of state and meson field equations as a function of the density.
* virtual const char * type ()
Return string denoting type ("ddc_eos").

Data Fields

¢ double rho0

Masses

¢ double mnuc
nucleon mass
¢ double ms
¢ mass (infm~1)
¢ double mw
A, mass (in fm~1)
¢ double mr
A, mass (in fm~1)

Parameters for couplings

* double Gs

The coupling T 5 (psat)-
¢ double Gw

The coupling T, (psat)-
¢ double Gr
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The coupling T, (psat)-
¢ double as

Qo
e double aw

Quw
e double ar

ap

¢ double bs
bs

¢ double bw
be,

¢ double cs
Co

¢ double cw

Cw

¢ double ds
ds

¢ double dw

dw

5.8.2 Member Function Documentation

5.8.2.1 virtual int calc_eq_e (fermion & neu, fermion & p, double sig, double ome, double rho, double & f1, double &
/2, double & f3, thermo & th) [virtual]

Equation of state and meson field equations as a function of the density.

This calculates the pressure and energy density as a function of w,,, ptp, ¢, Ao, A, . When the field equations have been solved, £1,
£2, and £3 are all zero.

Todo

Is the thermodynamic identity is satisfied even when the field equations are not solved? Check this.

The documentation for this class was generated from the following file:

¢ ddc_eos.h

5.9 eos Class Reference

Equation of state base.
#include <eos.h>

Inheritance diagram for eos::

[ I
| bps_eos | | hadronic_eos |
1

I ] [ ]
| hadronic_eos_temp || bag_eos || nambujl_eos |

ddc_eos 4| hadronic_eos_temp_edenJ | cfl_njl_eos J
gen_potential_eos hadronic_eos_temp_pres

schematic_eos

| hadronic_eos_eden | hadronic_eos_pres

sym4_eos

tabulated eos

i
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5.9.1 Detailed Description

Equation of state base.
A base class for the computation of an equation of state

Definition at line 41 of file eos.h.

Public Member Functions

e virtual int set_thermo (thermo &th)
Set class thermo object.

e virtual int get_thermo (thermo *&th)
Get class thermo object.

* virtual const char * type ()
Return string denoting type ("eos").

Data Fields

¢ thermo def_thermo
The default thermo object.

Protected Attributes

¢ thermo * eos_thermo
A pointer to the thermo object.

The documentation for this class was generated from the following file:

e cos.h

5.10 gen_potential_eos Class Reference

Generalized potential model equation of state.
#include <gen_potential_eos.h>

Inheritance diagram for gen_potential_eos::

| €0s

T

| hadronic_eos

T

| hadronic_eos_eden |

T

| gen_potential_eos |

T

| mdi4_eos
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5.10.1 Detailed Description

Generalized potential model equation of state.
The single particle energy is defined by the functional derivative of the energy density with respect to the distribution function

0
6fs

e, =

The effective mass is defined by
m

* (mde, -t
m  \ k dk k=kp
In all of the models, the kinetic energy density is 7,, + 7, where

n= oo [ % (3) 4

k fi(k,T)

and the number density is

pPi = (2

When form == mdi_form or gbd_form, the potential energy density is given by Das03 :

Au A, B potl
v =" i 200 = 7 1 1- 52 ‘/n Jee 1)
(p,9) poplpp+2p0(pn+pp)+g+1 - (1 = 20%) + Vinom(p. )

where 6 =1 — 2p,/(ppn + pp). If form == mdi_form, then

gy SO )
Vi (p,9) ZCTT//dkdk T

where 01/2_’1/2 = 071/27,1/2 = C@ and 01/2’,1/2 = 071/2’1/2 = Cu Otherwise if form == gbd_form, then

1
Vmom(pa 5) = % [CZ (pngn + ppgp) +Cy (pngp + ppgn)]

where
A? -1
9= [kp,; — Atan™" (kp;/A)]

Otherwise, if form == bgbd_form, bpalb_form or sl_form, then the potential energy density is given by BombaciOl :
V(p,0) =Va+Vp+ Vo

Va= ;:) [(1+ 7) (;—I—xo) (pi-l—pi)}

4B T
305 1+4B'T/ (3p5~'p?)

T=p""" [(1 + %) p* - <; + 583) (0% + Pﬁ)}

Tmax

4 2
Vo=) 7 (Ci+220) p(gn.i + gpi) + ¢ (Ci = 82i) (Pugni + PpOp.i)

i=1

B =

where

The term V> is:

where
2

i = o / Rty (k, T)gi (k)
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For form == bgbd_form or form == bpalb_form, the form factor is given by
K2\
gi(k) = (1 + A2>

while for form == sl_form, the form factor is given by

gi(k) =1- -5

where A; is specified in the parameter Lambda when necessary.

See Mathematica notebook at

doc/o2scl/extras/gen_potential_eos.nb
doc/o2scl/extras/gen_potential_eos.ps

Bug

The BGBD EOS doesn’t work and the effective mass for the GBD EOS doesn’t work

Idea for future

Calculate the chemical potentials analytically

Definition at line 172 of file gen_potential_eos.h.

The mode for the energy() function [protected]

¢ int mode

¢ static const int nmode = 1
e static const int pmode = 2
e static const int normal = 0

Public Member Functions

* virtual int calc_e (fermion &ne, fermion &pr, thermo &It)
Equation of state as a function of density.

e int set_mu_deriv (deriv< int, funct< int > > &de)
Set the derivative object to calculate the chemical potentials.

* virtual const char * type ()
Return string denoting type ("gen_potential_eos").

Data Fields

* int form
Form of potential.
e gsl_deriv< int, funct< int > > def_mu_deriv
The default derivative object for calculating chemical potentials.
* nonrel_fermion def_nr_neutron
Default nonrelativistic neutron.
 nonrel_fermion def_nr_proton
Default nonrelativistic proton.

The parameters for the various interactions
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double x

double Au
double Al

double rho(
double B

double sigma
double CI

double Cu
double Lambda
double A

double x0

double x3

double Bp
double C1
double z1

double Lambda2
double C2
double z2

double bpal_esym
int sym_index

Static Public Attributes

e static const int mdi_form =1

The "momentum-dependent-interaction” form.
* static const int bgbd_form =2

The modifed GBD form.
e static const int bpalb_form = 3

The form from Prakash88 as formulated in BombaciOl.
e static const int sl_form =4

The "SL" form. See BombaciOl.
e static const int gbd_form =5

The Gale, Bertsch, Das Gupta from Gale87.
* static const int bpal_form = 6

The form from PrakashS88.

Protected Member Functions

* double mom_integral (double pft, double pftp)
Compute the momentum integral for mdi_form.
¢ double energy (double x)
Compute the energy.

Protected Attributes
* bool mu_deriv_set
True of the derivative object has been set.

¢ deriv< int, funct< int > > * mu_deriv_ptr
The derivative object.

The documentation for this class was generated from the following file:

* gen_potential_eos.h




5.11 hadronic_eos Class Reference 38

5.11 hadronic_eos Class Reference

Hadronic equation of state [abstract base].
#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos::

[ e ]
[ I
[ s | [ riovemspe |
T
[ I I I 1 [
G| [ ompoenas | [ wemmess | [ omiss | [ @uacies | [reiovcss ]

o= [ om= ] Cme ]
I I

\ mid_eos \ \ mi_delta_eos

‘ aprd_eos. ‘ ‘ skyrmea_eos

5.11.1 Detailed Description

Hadronic equation of state [abstract base].
In the method documentation below, n is baryon number density, € is energy density, and P is pressure.

See more about Svprime in the Mathematica notebook at

doc/o2scl/extras/hadronic_eos.nb
doc/o2scl/extras/hadronic_eos.ps

Idea for future

Could write a function to compute the "symmetry free energy" or the "symmetry entropy"

Definition at line 66 of file hadronic_eos.h.

Public Member Functions

* int gradient_qij (fermion &n, fermion &p, thermo &th, double &qnn, double &qnp, double &qpp, double &dqnndnn, double
&dgnndnp, double &dgnpdnn, double &dqnpdnp, double &dqppdnn, double &dqppdnp)
Calculate coefficients for gradient part of Hamiltonian.
e virtual const char * type ()
Return string denoting type ("hadronic_eos").

Equation of state

e virtual int calc_p (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of the chemical potentials.

e virtual int calc_e (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of density.

Physical properties

* virtual double fcomp (const double nb)
Calculate compressibility of nuclear matter using calc_e().

* virtual double feoa (const double nb, const double pf=0.5)
Calculate binding energy using calc_e().

* virtual double fesym (const double nb, const double pf=0.5)
Calculate symmetry energy of matter using calc_e().

* virtual double fesym_slope (const double nb, bool alt_sym=false)
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The symmetry energy slope parameter.
virtual double fesym_diff (const double nb)

Calculate symmetry energy of matter as energy of neutron matter minus the energy of nuclear matter.
virtual double fsprime (const double nb, const double pf=0.5)
Calculate S’ in matter using calc_e().
virtual double fkprime (const double nb)
Calculate skewness of nuclear matter using calc_e().
virtual double fmsom (const double nb, const double pf=0.5)
Calculate reduced neutron effective mass using calc_e().
virtual double fn0 (const double protfrac, double &leoa)

Calculate saturation density using calc_e().
virtual int saturation ()

Calculates all of the properties at the saturation density.

Functions for calculating physical properties

double calc_pressure (double nb, int &pa)

Calculate pressure of nuclear matter as a function of baryon density.
double calc_press_on2 (double nb, int &pa)

Calculate pressure / baryon density squared in nuclear matter as a function of baryon density.
double calc_edensity (double delta, int &pa)

Calculate energy density as a function of 'delta’.
double calc_esym (double nb, int &pa)

Calculate symmetry energy as a function of 'delta’.
double calc_esym (double nb, bool &alt)

Return the symmetry energy at density nb.
int saturation_matter_e (double x, double &y, int &pa)

Solve for zero pressure as a function of baryon density.

Other functions

int nuc_matter_p (size_t nv, const ovector_base &x, ovector_base &y, double x&pa)
Nucleonic matter from calc_p().

int nuc_matter_e (size_t nv, const ovector_base &x, ovector_base &y, double x&pa)
Nucleonic matter from calc_e().

Set auxilliary objects

virtual int set_mroot (mroot< double *, mm_funct< double * > > &mr)
Set class mroot object for use in calculating chemical potentials from densities.
virtual int set_sat_root (root< int, funct< int > > &mr)
Set class mroot object for use calculating saturation density.
virtual int set_sat_deriv (deriv< int, funct< int > > &de)
Set deriv object to use to find saturation properties.
virtual int set_sat_deriv2 (deriv< bool, funct< bool > > &de)
Set deriv object to use to find saturation properties.
virtual int set_n_and_p (fermion &n, fermion &p)
Set neutron and proton.

Data Fields

¢ double eoa

Binding energy.

¢ double comp

Compressibility.

e double esym

Symmetry energy.

¢ double n0

Saturation density.

¢ double msom

Effective mass.
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* double kprime

Skewness.
* double sprime

Symmetry energy derivative.
¢ fermion def neutron

The defaut neutron.
 fermion def_proton

The defaut proton.

Default solvers and derivative classes

* gsl_deriv< int, funct< int > > def_deriv
The default object for derivatives.
¢ gsl_deriv< bool, funct< bool > > def_deriv2
The second default object for derivatives.
¢ gsl_mroot_hybrids< double x, mm_funct< double x > > def_mroot
The default solver.
e cern_mroot_root< int, funct< int > > def sat_root
The default solver for calculating the saturation density.

Protected Member Functions

¢ double t1_fun (double barn, int &vp)
Compute tl for gradient_gqij().

* double t2_fun (double barn, int &vp)
Compute 12 for gradient_gqij().

Protected Attributes

e mroot< double *, mm_funct< double * > > * eos_mroot
The EOS solver.
e root< int, funct< int > > * sat_root
The solver to compute saturation properties.
e deriv< int, funct< int > > * sat_deriv
The derivative object for saturation properties.
¢ deriv< bool, funct< bool > > * sat_deriv2
The second derivative object for saturation properties.
¢ fermion * neutron
The neutron object.
¢ fermion * proton
The proton object.
* double proton_frac
Temporary proton fraction.
¢ double n_baryon
Temporary baryon number.

5.11.2 Member Function Documentation

5.11.2.1 double calc_edensity (double delta, int & pa)
Calculate energy density as a function of ’delta’.

Used by fesym(), pa is unused.
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5.11.2.2 double calc_esym (double nb, bool & alf)
Return the symmetry energy at density nb.

Used by fesym_slope().

5.11.2.3 double calc_esym (double nb, int & pa)
Calculate symmetry energy as a function of ’delta’.

Used by fsprime(), pa is unused.

5.11.2.4 double calc_press_on2 (double nb, int & pa)
Calculate pressure / baryon density squared in nuclear matter as a function of baryon density.

Used by fkprime(), pa is unused.

5.11.2.5 double calc_pressure (double nb, int & pa)
Calculate pressure of nuclear matter as a function of baryon density.

Used by fcomp(), pa is unused.

5.11.2.6 virtual double fcomp (const double nb) [virtual]
Calculate compressibility of nuclear matter using calc_e().

The compression modulus is defined here by: x = —1/V(dV/dP) = 1/n(dP/dn)~! It is customary to use the incompressibility
modulus K = 9/(ny) . This is the value denoted comp in the code and can be written: K = 9nd?¢/(dn?) = 9dP/(dn) . It is often
referred to as the "compressibility" and is about 220 MeV at saturation density. (Taken from Chabanat, et. al. NPA 627 (1997) 710.)
Note that this differs from Ko = 9n2d?(e/n)/(dn?) by 18 P/n at any density except the saturation density.

Reimplemented in apr_eos, and skyrme_eos.

5.11.2.7 virtual double feoa (const double nb, const double pf=0.5) [virtual]
Calculate binding energy using calc_e().

eoa = (energy density/baryon number density-nucleon mass) at n. = ng . By = —16/(hc)

5.11.2.8 virtual double fesym (const double nb, const double pf=0.5) [virtual]

(L29)
2” d52 n:n5,5:50

where § = 1 — 2z, 69 = 1 — 2z and z is the proton fraction (for x=0.5 at saturation density, esym =~ 32/%ic )

Calculate symmetry energy of matter using calc_e().

esym=

Reimplemented in skyrme_eos.

5.11.2.9 virtual double fesym_diff (const double nb) [virtual]
Calculate symmetry energy of matter as energy of neutron matter minus the energy of nuclear matter.

This function returns the energy per baryon of neutron matter minus the energy per baryon of nuclear matter. This will deviate
significantly from the results from fesym() only if the dependence of the symmetry energy on ¢ is not quadratic.

Reimplemented in apr_eos.
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5.11.2.10 virtual double fesym_slope (const double nb, bool alt_sym = false) [virtual]
The symmetry energy slope parameter.
This returns the value of the "slope parameter" of the symmetry energy
OF
L=3 sym
ns ( on B >
in inverse Fermis.

where np is the baryon density. This ranges between about zero and 200 MeV for many EOSs. If alt_sym is false (the default),
then fesym() is used to compute the symmetry energy, otherwise fesym_diff() is used.

5.11.2.11 virtual double fkprime (const double nb) [virtual]
Calculate skewness of nuclear matter using calc_e().
The skewness is defined to be 27n3d?(e/n)/(dn?) = 2Tn3d?(P/n?)/(dn?)

and is denoted ’kprime’. This definition seems to be ambiguous for densities other than the saturation density and is not quite
analogous to the compressibility.

Reimplemented in skyrme_eos.

5.11.2.12 virtual double fmsom (const double nb, const double pf=0.5) [virtual]
Calculate reduced neutron effective mass using calc_e().

Neutron effective mass (n.ms) divided by vacuum mass (n.m) in nuclear matter at saturation density. Note that this simply uses the
value of n.ms from calc_e(), so that this effective mass could be either the Landau or Dirac mass depending on the context. Note that
this may not be equal to the reduced proton effective mass.

5.11.2.13 virtual double fn0 (const double protfrac, double & leoa) [virtual]
Calculate saturation density using calc_e().
This function finds the density for which the pressure vanishes in matter with n,, = n,, .

no = baryon number density at which P = 0,y =~ 0.16

5.11.2.14 virtual double fsprime (const double nb, const double pf=0.5) [virtual]

(1
dn 2n d62 n=npg,0=0Jg

where § =1 — 2z, 69 = 1 — 2(pf) and = is the proton fraction

Calculate S’ in matter using calc_e().

sprime =

5.11.2.15 int gradient_qij (fermion & n, fermion & p, thermo & th, double & gnn, double & gnp, double & gpp, double
& dgqnndnn, double & dgnndnp, double & dgnpdnn, double & dgnpdnp, double & dgppdnn, double & dgppdnp)

Calculate coefficients for gradient part of Hamiltonian.

Note:

This is still somewhat experimental.
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We want the gradient part of the Hamiltonian in the form

ngad = % Z Z Qljﬁnl ’ ﬁn]‘

i=n,p j=n,p
The expression for the gradient terms from Pethick95 is
1
Mgrad = —7 (2P1+ Pup — Pay)
1
+§ (Ql + QQ) (nnVan + anan)
1
+7 (@1 — Q) [(Vna)? + (V)]
1dQs
—5—5% (npVn, +n,Vn,) - Vn
This can be rewritten
1 2[3 dpP,
Hana = 5 (V1) [QP o "dn}
3 2 2
=5 (V) + (Im,)?]
1 dQ:
R
1 2 1 2 2
3 (V) Py = £ [(Vn)? + (Vn,)?] @
or
1 2 dpP,
ngad = Z (Vn) |:3P1 + 271% — P2:|
1 2 2
1 3Q1+Q2) [(Vn,)* + (Vn,)?]
1dQy
*5% [nnVnn + annp] -Vn
or
1 2 dpPy
ngad = Z (Vn) |:3P1 + 271% — P2:|
1
1 (31 +Q2) [(Vn)* + (Vn,)?]

1d
_1do [nn (Vnn)? 4+ n, (V) +nVn,, - Vnp}
2 dn
Generally, for Skyrme-like interactions
1
P, = Zti 1+ 533@
1 1
Qi = It <2+$i) :

fori=1,2.

This function uses the assumption z; = zo = 0 to calculate ¢; and ¢, from the neutron and proton effective masses assuming the
Skyrme form. The values of ();; and their derivatives are then computed.

The functions set_n_and_p() and set_thermo() will be called by gradient_qij(), to facilitate the use of the n, p, and th parameters.
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5.11.2.16 int saturation_matter_e (double x, double & y, int & pa)
Solve for zero pressure as a function of baryon density.

Used by fn0().

5.11.2.17 virtual int set_sat_deriv2 (deriv< bool, funct< bool > > & de) [virtual]

Set deriv object to use to find saturation properties.

Todo

Document the distinction between this and set_sat_deriv().

5.11.3 Field Documentation

5.11.3.1 gsl_deriv<int,funct<int> > def_deriv
The default object for derivatives.
The value of gsl_deriv::h is set to 1073 in the hadronic_eos constructor.

Definition at line 414 of file hadronic_eos.h.

5.11.3.2 gsl_deriv<bool,funct<bool> > def deriv2
The second default object for derivatives.
The value of gsl_deriv::h is set to 102 in the hadronic_eos constructor.

Definition at line 422 of file hadronic_eos.h.

5.11.3.3 gsl_mroot_hybrids<double x,mm_funct<double x> > def_mroot
The default solver.
Used by calc_e() to solve nuc_matter_p() (2 variables) and by calc_p() to solve nuc_matter_e() (2 variables).

Definition at line 430 of file hadronic_eos.h.

5.11.3.4 cern_mroot_root<int,funct<int> > def_sat_root

The default solver for calculating the saturation density.

Used by fn0() (which is called by saturation()) to solve saturation_matter_e() (1 variable).
Definition at line 438 of file hadronic_eos.h.

The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.12 hadronic_eos_eden Class Reference

A hadronic EOS based on a function of the densities [abstract base].
#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos_eden::
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ddc_eos | | gen Jnotential_eos| | schematic_eos | |

sym4_eos

| | tabulated_eos

5.12.1 Detailed Description
A hadronic EOS based on a function of the densities [abstract base].

Definition at line 483 of file hadronic_eos.h.

Public Member Functions

e virtual int calc_e (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of density.

e virtual int calc_p (fermion &n, fermion &p, thermo &th)
Equation of state as a function of the chemical potentials.

The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.13 hadronic_eos_pres Class Reference

A hadronic EOS based on a function of the chemical potentials [abstract base].

#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos_pres::

| hadronic_eos |

T

| hadronic_eos pres |

5.13.1 Detailed Description

A hadronic EOS based on a function of the chemical potentials [abstract base].

Definition at line 501 of file hadronic_eos.h.
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Public Member Functions
e virtual int calc_p (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of the chemical potentials.

e virtual int calc_e (fermion &n, fermion &p, thermo &th)
Equation of state as a function of density.

The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.14 hadronic_eos_temp Class Reference

A finite temperature hadronic EOS.
#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos_temp::

| eos |
T

| hadronic_eos |

T

| hadronic_eos _temp |
i

| hadronic_eos_temp_eden| | hadronic_eos_temp_pres |
* (
[ |
| apr_eos | | skyrme_eos | | rmf_eos |
I I | : |
| aprd_eos | | skyrme4_eos | | rmf4_eos | | rmf_delta_eos

5.14.1 Detailed Description

A finite temperature hadronic EOS.

Definition at line 517 of file hadronic_eos.h.

Public Member Functions

* virtual int set_n_and_p_T (fermion_T &n, fermion_T &p)
Set neutron and proton.

e virtual int calc_e (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of density.

e virtual int calc_temp_e (fermion_T &n, fermion_T &p, const double T, thermo &th)=0
Equation of state as a function of densities at finite temperature.

« virtual int calc_p (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of the chemical potentials.

* virtual int calc_temp_p (fermion_T &n, fermion_T &p, const double T, thermo &th)=0
Equation of state as a function of the chemical potentials at finite temperature.
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Data Fields

o eff fermion def neutron_T
The defaut neutron.

¢ eff fermion def proton_T
The defaut proton.

Protected Member Functions

* int nuc_matter_temp_e (size_t nv, const ovector_base &x, ovector_base &y, double x&pa)
Solve for nuclear matter at finite temperature given density.

e int nuc_matter_temp_p (size_t nv, const ovector_base &x, ovector_base &y, double *&pa)
Solve for nuclear matter at finite temperature given mu.

Protected Attributes

¢ fermion_T * neutron_T
The neutron object.
e fermion_T * proton_T

The proton object.
e double IT

The temperature.

The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.15 hadronic_eos_temp_eden Class Reference

A hadronic EOS at finite temperature based on a function of the densities [abstract base].
#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos_temp_eden::

| e0s |

T

| hadronic_eos |

T

| hadronic_eos temp |

T

| hadronic_eos temp_eden |

i
[ |

| apr_eos | | skyrme_eos |

T I

| aprd_eos | | skyrmed_eos |

5.15.1 Detailed Description

A hadronic EOS at finite temperature based on a function of the densities [abstract base].

Definition at line 593 of file hadronic_eos.h.
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Public Member Functions

e virtual int calc_e (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of density.

e virtual int calc_temp_e (fermion_T &n, fermion_T &p, const double T, thermo &th)=0
Equation of state as a function of densities at finite temperature.

e virtual int calc_p (fermion &n, fermion &p, thermo &th)
Equation of state as a function of the chemical potentials.

« virtual int calc_temp_p (fermion_T &n, fermion_T &p, const double T, thermo &th)
Equation of state as a function of the chemical potentials at finite temperature.

The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.16 hadronic_eos_temp_pres Class Reference

A hadronic EOS at finite temperature based on a function of the chemical potentials [abstract base].

#include <hadronic_eos.h>

Inheritance diagram for hadronic_eos_temp_pres::

| e0s |

T

| hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos temp_pres |

T

| rmf_eos |

i
[ |

rmf4_eos | | rmf_delta_eos

5.16.1 Detailed Description

A hadronic EOS at finite temperature based on a function of the chemical potentials [abstract base].

Definition at line 625 of file hadronic_eos.h.

Public Member Functions

e virtual int calc_p (fermion &n, fermion &p, thermo &th)=0
Equation of state as a function of the chemical potentials.

e virtual int calc_temp_p (fermion_T &n, fermion_T &p, const double T, thermo &th)=0
Equation of state as a function of the chemical potentials at finite temperature.

* virtual int calc_e (fermion &n, fermion &p, thermo &th)
Equation of state as a function of density.

* virtual int calc_temp_e (fermion_T &n, fermion_T &p, const double T, thermo &th)
Equation of state as a function of densities at finite temperature.
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The documentation for this class was generated from the following file:

¢ hadronic_eos.h

5.17 mdi4_eos Class Reference

A version of gen_potential_eos to separate potential and kinetic contributions.
#include <sym4_eos.h>

Inheritance diagram for mdi4_eos::

[ s |

T

| hadronic_eos |

T

| hadronic_eos eden |

T

| gen_potential_eos | | sym4_eos_base |
f

N
| mdi4_eos |

5.17.1 Detailed Description

A version of gen_potential_eos to separate potential and kinetic contributions.

References:
Created for Steiner06.

Definition at line 157 of file sym4_eos.h.

Public Member Functions

* virtual int calc_e_sep (fermion &ne, fermion &pr, double &ed_kin, double &ed_pot, double &mu_n_kin, double &mu_p_-
kin, double &mu_n_pot, double &mu_p_pot)
Compute the potential and kinetic parts separately.
e virtual int test_separation (fermion &ne, fermion &pr, test_mgr &t)
Test the separation of the potential and kinetic energy parts.

Protected Member Functions
* double energy_kin (double var)
Compute the kinetic part of the energy density.

¢ double energy_pot (double var)
Compute the potential part of the energy density.

The documentation for this class was generated from the following file:

e sym4_eos.h
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5.18 nambujl_eos Class Reference

Nambu Jona-Lasinio EOS at zero temperature.
#include <nambujl_eos.h>

Inheritance diagram for nambujl_eos::

5.18.1 Detailed Description

Nambu Jona-Lasinio EOS at zero temperature.

Calculates everything from the quark condensates ([uds].qq) and the chemical potentials ([uds].mu). If "fromqq" is set to false,
then instead it calculates everything from the dynamical masses ([uds].ms) and the chemical potentials. L, G, K, and BO are fixed
constants. [uds].pr returns the pressure due to the Fermi-gas contribution plus the bag pressure contribution. [uds.ed] is the energy
density for each quark so that e.g. u.ed+u.pr=u.muxu.n. BO should be fixed using calc_B0() beforehand to ensure that the energy
density and pressure of the vacuum is zero.

The functions set_parameters() should be called first.
The code is based on Buballa99.
The Lagrangian is

8
L=q(ip—ro)g + GY_[(@a)* + (@5 ea)’ ] + Lo
k=0

Lo =—K [dets(q(1+75)q) + dets(q(1 —75)q)].

And the corresponding thermodynamic potential is
Q=0Qrc+ Qrnt

where Q¢ is the Fermi gas contribution and

QInt o d3p /. 2 2 QV
v = QNC Z /(271_)3 mi—&-p +7

i=u,d,s

Qy

= > 2G{qiqi)* — 4K (ququ)(Gaga)(sqs) + Bo-

i=u,d,s
where By is a constant defined to ensure that the energy density and the pressure of the vacuum is zero.

Unlike Buballa99, the bag constant, Q7,,;/V is defined without the term

A 3
d’p
> 2N, — = JmZ, +p?
C/o (2m)3 Mo TP dp

i=u,d,s
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since this allows an easier comparison to the finite temperature EOS. The constant By in this case is therefore significantly larger,
but the energy density and pressure are still zero in the vacuum.

The Feynman-Hellman theorem (Bernard88 ), gives
om*

<QQ> = om

The functions calc_e() and calc_p() never return a value other than zero, but will give nonsensical results for nonsensical inputs.
Finite T documentation

Calculates everything from the quark condensates ([uds].qq) and the chemical potentials ([uds].mu). If "fromqq" is set to false,
then instead it calculates everything from the dynamical masses ([uds].ms) and the chemical potentials. L, G, K, and BO are fixed
constants. [uds].pr returns the pressure due to the Fermi-gas contribution plus the bag pressure contribution. [uds.ed] is the energy
density for each quark so that e.g. u.ed+u.pr=u.muxu.n. B0 is fixed to ensure that the energy density and pressure of the vacuum is
ZEero.

This implementation includes contributions from antiquarks.

References:
Created for Steiner00. See also Buballa99 and Hatsuda94.

Definition at line 129 of file nambujl_eos.h.

Data Structures

* struct njtp_s
A structure for passing parameters to the integrands.

Public Types

* typedef struct nambujl_eos::njtp_s njtp
A structure for passing parameters to the integrands.

Public Member Functions

e virtual int set_parameters (double lambda=0.0, double fourferm=0.0, double sixferm=0.0)
Set the parameters and the bag constant BO.
* virtual int calc_p (quark &u, quark &d, quark &s, thermo &lth)
Equation of state as a function of chemical potentials.
e virtual int calc_temp_p (quark &u, quark &d, quark &s, const double T, thermo &th)
Equation of state as a function of chemical potentials at finite temperature.
e virtual int calc_eq_p (quark &u, quark &d, quark &s, double &gapl, double &gap2, double &gap3, thermo &lth)
Equation of state and gap equations as a function of chemical potential.
* virtual int calc_eq_e (quark &u, quark &d, quark &s, double &gapl, double &gap2, double &gap3, thermo &lth)
Equation of state and gap equations as a function of the densities.
* int calc_eq_temp_p (quark &tu, quark &td, quark &ts, double &gapl, double &gap2, double &gap3, thermo &qb, const
double temper)
Equation of state and gap equations as a function of chemical potentials.
* int gapfunms (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Calculates gap equations in y as a function of the constituent masses in x.
* int gapfunqq (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Calculates gap equations in y as a function of the quark condensates in x.
¢ int gapfunmsT (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Calculates gap equations in y as a function of the constituent masses in x.
* int gapfunqqT (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Calculates gap equations in y as a function of the quark condensates in x.
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* int set_quarks (quark &u, quark &d, quark &s)
Set the quark objects to use.
e virtual const char * type ()
Return string denoting type ("nambujl_eos").
e virtual int set_solver (mroot< int, mm_funct< int > > &s)
Set solver to use in set_parameters().
« virtual int set_inte (inte< const njtp, funct< const njtp > > &i)
Set integration object.

Data Fields

* double limit
Accuracy limit for Fermi integrals for finite temperature.
* bool fromqq
Calculate from quark condensates if true (default true).
* double L
The momentum cutoff.
* double G
The four-fermion coupling.
¢ double K
The 't Hooft six-fermion interaction coupling.
double BO
The bag constant.
e gsl_mroot_hybrids< int, mm_funct< int > > def_solver
The default solver.
* gsl_inte_qag< const njtp, funct< const njtp > > def_it
The default integrator.

The default quark masses

These are the values from Buballa99 which were used to fix the pion and kaon decay constants, and the pion, kaon, and eta prime
masses. They are set in the constructor and are in units of fm~" .

¢ double up_default_mass
¢ double down_default_mass
¢ double strange_default_mass

The default quark objects

The masses are automatically set in the constructor to up_default_mass, down_default_mass, and strange_-
default_mass.c

o eff_quark def_up
* eff quark def_down
* eff quark def_strange

Protected Member Functions

* int BOfun (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Used by calc_BO() to compute the bag constant.
* void njbag (quark &q)
Calculates the contribution to the bag constant from quark q.
¢ double iqq (double x, const njtp &pa)
The integrand for the quark condensate.
double ide (double x, const njtp &pa)
The integrand for the density.
double ied (double x, const njtp &pa)
The integrand for the energy density.
double ipr (double x, const njtp &pa)

The integrand for the pressure.
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Protected Attributes

* inte< const njtp, funct< const njtp > > x it
The integrator for finite temperature integrals.
e mroot< int, mm_funct< int > > * solver
The solver to use for set_parameters().
e quark * up
The up quark.
¢ quark *x down
The down quark.
e quark x* strange
The strange quark.
* double cp_temp
The temperature for calc_temp_p().

5.18.2 Member Function Documentation

5.18.2.1 virtual int calc_p (quark & u, quark & d, quark & s, thermo & Ith) [virtual]
Equation of state as a function of chemical potentials.
This function automatically solves the gap equations

Reimplemented from quark_eos.

5.18.2.2 virtual int calc_temp_p (quark & u, quark & d, quark & s, const double 7, thermo & th) [virtual]
Equation of state as a function of chemical potentials at finite temperature.
This function automatically solves the gap equations

Reimplemented from quark_eos.

5.18.2.3 int gapfunms (size_t nv, const ovector_base & x, ovector_base & y, int & pa)
Calculates gap equations in y as a function of the constituent masses in x.

The function utilizes the quark objects which can be specified in set_quarks() and the thermo object which can be specified in
eos::set_thermo().

5.18.2.4 int gapfunmsT (size_t nv, const ovector_base & x, ovector_base & y, int & pa)
Calculates gap equations in y as a function of the constituent masses in x.

The function utilizes the quark objects which can be specified in set_quarks() and the thermo object which can be specified in
eos::set_thermo().

5.18.2.5 int gapfunqq (size_t nv, const ovector_base & x, ovector_base & y, int & pa)
Calculates gap equations in y as a function of the quark condensates in x.

The function utilizes the quark objects which can be specified in set_quarks() and the thermo object which can be specified in
eos::set_thermo().

5.18.2.6 int gapfunqqT (size_t nv, const ovector_base & x, ovector_base & y, int & pa)
Calculates gap equations in y as a function of the quark condensates in x.

The function utilizes the quark objects which can be specified in set_quarks() and the thermo object which can be specified in
eos::set_thermo().




5.19 nambujl_eos::njtp_s Struct Reference 54

5.18.2.7 virtual int set_parameters (double lambda = 0.0, double fourferm = 0.0, double sixferm = 0.0) [virtual]

Set the parameters and the bag constant BO.

This function allows the user to specify the momentum cutoff, 1ambda, the four-fermion coupling four ferm and the six-fermion
coupling from the ’t Hooft interaction sixferm. If 0.0 is given for any of the values, then the default is used (A = 602.3/(hc), G =
1.835/A% K = 12.36/A%).

The value of the shift in the bag constant B0 is automatically calculated to ensure that the energy density and the pressure of the
vacuum are zero. The functions set_quarks() and set_thermo() can be used before hand to specify the quark and thermo objects.

5.18.2.8 int set_quarks (quark & u, quark & d, quark & s)
Set the quark objects to use.

The quark objects are used in gapfunms(), gapfunqq(), gapfunmsT(), gapfunqqT(), and BOfun().

5.18.3 Field Documentation

5.18.3.1 bool fromqq
Calculate from quark condensates if true (default true).
If this is false, then computations are performed using the effective masses as inputs

Definition at line 166 of file nambujl_eos.h.

5.18.3.2 double limit
Accuracy limit for Fermi integrals for finite temperature.

limit is used for the finite temperature integrals to ensure that no numbers larger than exp(limit) or smaller than exp(-limit) are
avoided. (Default: 20)

Definition at line 158 of file nambujl_eos.h.

The documentation for this class was generated from the following file:

* nambujl_eos.h

5.19 nambujl_eos::njtp_s Struct Reference

A structure for passing parameters to the integrands.

#include <nambujl_eos.h>

5.19.1 Detailed Description

A structure for passing parameters to the integrands.

Definition at line 299 of file nambujl_eos.h.

Data Fields

¢ double ms

¢ double m

¢ double mu

¢ double temper
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¢ double limit

The documentation for this struct was generated from the following file:

* nambujl_eos.h

5.20 nse_eos Class Reference

Equation of state for nuclei in statistical equilibrium.

#include <nse_eos.h>

5.20.1 Detailed Description

Equation of state for nuclei in statistical equilibrium.

This class computes the composition of matter in nuclear statistical equilibrium. The chemical potential of a nucleus X with proton
number Zx and neutron number Nx is given by

px = Nppn + Zpyy — Epina, x
where (1, and p1, are the neutron and proton chemical potentials and Eyinq, x is the binding energy of the nucleus.
The baryon number density and electron fraction are then given by
nB:nx(Nx+Zx> Yong =nxZx

where n x is the number density which is determined from the chemical potential above.

This implicitly assumes that the nuclei are non-interacting.

Idea for future

Right now calc_density() needs a very good guess. This could be fixed, probably by solving for the log(mu/T) instead of mu.

Definition at line 62 of file nse_eos.h.

Public Member Functions

¢ int calc_mu (double mun, double mup, double T, double &nb, double &Ye, thermo &th, nuclear_dist &nd)
Calculate the equation of state as a function of the chemical potentials.

* int calc_density (double nb, double Ye, double T, double &mun, double &mup, thermo &th, nuclear_dist &nd)
Calculate the equation of state as a function of the densities.

* int set_mroot (mroot< solve_parms, mm_funct< solve_parms > > &rp)
Set the solver for use in computing the chemical potentials.

Data Fields

* gsl_mroot_hybrids< solve_parms, mm_funct< solve_parms > > def root
Default solver.
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5.20.2 Member Function Documentation

5.20.2.1 int calc_density (double nb, double Ye, double 7, double & mun, double & mup, thermo & th, nuclear_dist &
nd)

Calculate the equation of state as a function of the densities.

Given the baryon number density nb, and the electron fraction Ye and the temperature T, this computes the composition (the
individual densities are stored in the distribution nd) and the chemical potentials are given in mun and mup .

This function uses the solver to self-consistently compute the chemical potentials.

5.20.2.2 int calc_mu (double mun, double mup, double T, double & nb, double & Ye, thermo & th, nuclear_dist & nd)
Calculate the equation of state as a function of the chemical potentials.

Given mun, mup and T, this computes the composition (the individual densities are stored in the distribution nd) the baryon number
density nb, and the electron fraction Ye.

This function does not use the solver.

The documentation for this class was generated from the following file:

* nse_eos.h

5.21 quark_eos Class Reference

Quark matter equation of state base.
#include <quark_eos.h>

Inheritance diagram for quark_eos::

quark_eos

| bag_eos ||nambuj|_eos|

cfl_njl_eos

5.21.1 Detailed Description

Quark matter equation of state base.

Definition at line 39 of file quark_eos.h.

Public Member Functions

e virtual int calc_p (quark &u, quark &d, quark &s, thermo &th)
Calculate equation of state as a function of chemical potentials.
« virtual int calc_e (quark &u, quark &d, quark &s, thermo &th)
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Calculate equation of state as a function of density.

e virtual int calc_temp_p (quark &u, quark &d, quark &s, const double temper, thermo &th)
Calculate equation of state as a function of chemical potentials.

* virtual int calc_temp_e (quark &u, quark &d, quark &s, const double temper, thermo &th)
Calculate equation of state as a function of density.

* virtual const char * type ()
Return string denoting type ("quark_eos").

The documentation for this class was generated from the following file:

e quark_eos.h

5.22 rmf4_eos Class Reference

A version of rmf_eos to separate potential and kinetic contributions.
#include <symé4_eos.h>

Inheritance diagram for rmf4_eos::

| e0s |

T

hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos temp_pres |

T

| rmf_eos | | sym4_eos base

t f
N

| rmf4_eos

5.22.1 Detailed Description

A version of rmf_eos to separate potential and kinetic contributions.

References:
Created for Steiner06.

Definition at line 97 of file sym4_eos.h.

Public Member Functions
e virtual int calc_e_sep (fermion &ne, fermion &pr, double &ed_kin, double &ed_pot, double &mu_n_kin, double &mu_p_-

kin, double &mu_n_pot, double &mu_p_pot)

Compute the potential and kinetic parts separately.

The documentation for this class was generated from the following file:

* sym4_eos.h
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5.23 rmf delta_eos Class Reference

Field-theoretical EOS with scalar-isovector meson,.
#include <rmf_delta_eos.h>

Inheritance diagram for rmf_delta_eos::

| e0s |

T

| hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos_temp_pres |

T

| rmf_eos |

T

| rmf_delta eos |

5.23.1 Detailed Description

Field-theoretical EOS with scalar-isovector meson,.

J.

This essentially follows the notation in Kubis97, except that our definitions of b and c follow their b and ¢, respectively.
Also discussed in Gaitanos04, where they take ms = 980 MeV.

The full Lagragian is:

ﬁiﬁDirac+£g+£w+ﬁp+£§

Lowae = Vi —gub = L7 =M +g,0 = 5 (14+7) 4, ¥
Lo = 30u0) — dn2o? = 28 (550)" = 5 (g,0)"
Lo = —buf™ + mdetn, + 2ogh (oo,
Ly = B B LAtk g () Pt (o)

where the additional terms are
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Idea for future

Finish the finite temperature EOS

Definition at line 93 of file rmf_delta_eos.h.

Public Member Functions

e virtual int calc_e (fermion &ne, fermion &pr, thermo &lth)
Equation of state as a function of density.

e virtual int calc_p (fermion &neu, fermion &p, double sig, double ome, double rho, double delta, double &f1, double &f2,

double &f3, double &f4, thermo &th)

Equation of state as a function of chemical potentials.

* int calc_temp_p (fermion_T &ne, fermion_T &pr, double temper, double sig, double ome, double Irho, double delta, double

&f1, double &f2, double &f3, double &f4, thermo &Ith)
Finite temperature (unfinished).
* virtual int set_fields (double sig, double ome, double Irho, double delta)
Set a guess for the fields for the next call to calc_e(), calc_p(), or saturation().
e virtual int saturation ()
Calculate saturation properties for nuclear matter at the saturation density.

Data Fields

* double md

The mass of the scalar-isovector field.
* double cd

The coupling of the scalar-isovector field to the nucleons.
* double del

The value of the scalar-isovector field.

Protected Member Functions

* virtual int calc_e_solve_fun (size_t nv, const ovector_base &ex, ovector_base &ey, double x&pa)
The function for calc_e().

e virtual int zero_pressure (size_t nv, const ovector_base &ex, ovector_base &ey, int &pa)
Compute matter at zero pressure (for saturation()).

Private Member Functions

« virtual int set_fields (double sig, double ome, double Irho)
Forbid setting the guesses to the fields unless all four fields are specified.

5.23.2 Member Function Documentation

5.23.2.1 virtual int saturation () [virtual]

Calculate saturation properties for nuclear matter at the saturation density.
This requires initial guesses to the chemical potentials, etc.
Reimplemented from rmf_eos.

The documentation for this class was generated from the following file:

o rmf_delta_eos.h
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5.24 rmf _eos Class Reference

Relativistic mean field theory EOS.
#include <rmf_eos.h>

Inheritance diagram for rmf_eos::

| e0s |

T

hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos temp_pres |

T

| rmf_eos |

i
[ |

rmf4_eos | | rmf_delta_eos

5.24.1 Detailed Description

Relativistic mean field theory EOS.

Before sending neutrons and protons to these member functions, the masses should be set to their vacuum values and the degeneracy
factor should be 2. If an internal model is used (using load()), then the neutron and proton masses should be set to mnuc.

It is important to point out that expressions for the energy densities are often simplified in the literature using the field equations.
These expressions are not used in this code since they are only applicable in infinite matter where the field equations hold, and are
not suitable for use in applications (such as to finite nuclei) where the spatial derivatives of the fields are non-zero. Notice that in
the proper expressions for the energy density the similarity between terms in the pressure up to a sign. This procedure allows one to
verify the thermodynamic identity even if the field equations are not solved and allows the user to add gradient terms to the energy
density and pressure.

Note:

Since this EOS uses the effective masses and chemical potentials in the fermion class, the values of part::non_interacting for
neutrons and protons are set to false in many of the functions.

Todo

* The number of couplings is getting large, maybe new organization is required.
¢ Check the formulas in the "Background" section

* Overload hadronic_eos::fcomp() with an exact version

* Fix calc_p() to be better at guessing

* There are two calc_e() functions that solve. One is specially designed to work without a good initial guess. Possibly the
other calc_e() function should be similarly designed?

» Make sure that this class properly handles particles for which inc_rest_mass is true/false

It might be nice to remove explicit reference to the meson masses in functions which only compute nuclear matter since
they are unnecessary. This might, however, demand redefining some of the couplings.

* The error handler is called sometimes when calc_e() is used to compute pure neutron matter. This should be fixed.
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Background
The full Lagragian is:

L= ['Di'r‘ac + ‘Ca + Ew + Ep

Lo = U[id =g = L7 = M+ go0 = S (L4 7) A, ] ¥
Lo = 30u0) — dn2o? = 28 (350)" = 5 (g00)"
L, = _% w [1Y + lmiw#wu + %93 (Wﬂwu)Q
L, = —iB,,  B"+Im?p" 5, + %gp (P") P u+9,f(ow)

The coefficients b and c are related to the somewhat standard « and \ by:
k=2Mb \=6c;

The function f is the coefficient of g2p?
flo,w) = biw? + bow? + b3w® + a10 + as0? + azo® + ago0* + a50° + ago®
where the notation from HorowitzO1 is:

f(aa w) = )\49302 + /\vgzzu""JZ

2
s

This implies b1 = A, g2 and as = A9

The field equations are:

0
0=m20 — gy (Ngn +nsp) + bMg30? + cgio® — gip2£
0
0= miw — g (M +1p) + %gf)w?’gina—i

1 §
0= mpp+ 59, (nn = 1) +2050f + £6,0°

When the variable zm_mode is true, the effective mass is fixed using the approach of Zimanyio0 .

Defining

1 bM c
Uo) = §m302 + ?(gaa)?’ + 1(900)4 ;

the binding energy per particle in symmetric matter at equilibrium is given by
kr

E 1 1 2
7= |Uloo) + —mywg + g(gwwo)4 + ;/dkk"’\/k? + M*2

no 2 8 )
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where the Dirac effective mass is M* = M — g,0( . The compressibility is given by

2 2 *2 2 —1
7 k2, M2[(1 0 30 no
K=9% 00135 _gp— (= + —— 2 ) U(op) - 3 .
mz gy T K 2902 T gadl 9oy ) V00 73

w

The symmetry energy of bulk matter is given by

k% n n
6ER 8 (g5/mj + 2f(00,w0))

Esym =

In the above equations, the subscipt “ 0 ” denotes the mean field values of ¢ and w . For the case f = 0, the symmetry energy varies
linearly with the density at large densities. The function f permits variations in the density dependence of the symmetry energy
above nuclear matter density.

See also Muller96, Zimanyi90.

Definition at line 213 of file rmf_eos.h.

Public Member Functions

* int load (std::string model, bool external=false)
Load parameters for model named "model’.
* int calc_temp_e (fermion_T &ne, fermion_T &pr, const double T, thermo &lth)
Equation of state as a function of densities at finite temperature.
* int fix_saturation (double guess_cs=4.0, double guess_cw=3.0, double guess_b=0.001, double guess_c=-0.001)
Calculate cs, cw, cr, b, and c from the saturation properties.
e virtual int saturation ()
Calculate properties for nuclear matter at the saturation density.
* double fesym_fields (double sig, double ome, double nb)
Calculate symmetry energy assuming the field equations have already been solved.
* double fcomp_fields (double sig, double ome, double nb)
Calculate the compressibility assuming the field equations have already been solved.
* int fkprime_fields (double sig, double ome, double nb, double &k, double &kprime)
Calculate compressibilty and kprime assuming the field equations have already been solved.
* int field_eqs (size_t nv, const ovector_base &x, ovector_base &y, double x&pa)
A function for solving the field equations.
« int field_eqsT (size_t nv, const ovector_base &x, ovector_base &y, double *&pa)
A function for solving the field equations at finite temperature.
* virtual int set_fields (double sig, double ome, double Irho)
Set a guess for the fields for the next call to calc_e(), calc_p(), or saturation().
* int get_fields (double &sig, double &ome, double &Irho)
Return the most recent values of the meson fields.
* virtual const char * type ()
Return string denoting type ("rmf_eos").
e int check_naturalness (rmf_eos &re)
Set the coefficients of a rmf_eos object to their limits from naturalness.
e int naturalness_limits (double value, rmf_eos &re)
Provide the maximum values of the couplings assuming a limit on naturalness.
e virtual int set_sat_mroot (mroot< int, mm_funct< int > > &mrx)
Set class mroot object for use calculating saturation density.

Compute EOS from densities at zero temperature

* virtual int calc_e (fermion &ne, fermion &pr, thermo &Ith)
Equation of state as a function of density.

* virtual int calc_e (fermion &ne, fermion &pr, thermo &lth, double &sig, double &ome, double &rho)
Equation of state as a function of density.
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Compute EOS from chemical at zero temperature

e virtual int calc_p (fermion &ne, fermion &pr, thermo &lth)
Equation of state as a function of chemical potential.
e virtual int calc_eq_p (fermion &neu, fermion &p, double sig, double ome, double rho, double &f1, double &f2, double
&f3, thermo &th)

Equation of state and meson field equations as a function of chemical potentials.
Compute EOS from chemical potentials at finite temperature

e virtual int calc_eq_temp_p (fermion_T &ne, fermion_T &pr, const double temper, double sig, double ome, double rho,
double &f1, double &f2, double &f3, thermo &th)
Equation of state and meson field equations as a function of chemical potentials.
* virtual int calc_temp_p (fermion_T &ne, fermion_T &pr, const double T, thermo &lth)
Equation of state as a function of chemical potential.

Data Fields

¢ bool zm_mode
Modifies method of calculating effective masses.

¢ gsl_mroot_hybrids< int, mm_funct< int > > def_sat_mroot
The default solver for calculating the saturation density.

Masses

* double mnuc
nucleon mass
¢ double ms
o mass (in fm™1)
¢ double mw
w mass (in fm ™' )
e double mr
p mass (in fm™")

Standard couplings (including nonlinear sigma terms)

¢ double cs
¢ double cw
e double cr
e double b
e double ¢

Non-linear terms for omega and rho.

¢ double zeta
¢ double xi

Additional isovector couplings

double al
double a2
double a3
double a4
double a5
double a6
double b1l
double b2
double b3
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Protected Member Functions

* int fix_saturation_fun (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
The function for fix_saturation().
* virtual int zero_pressure (size_t nv, const ovector_base &ex, ovector_base &ey, int &pa)
Compute matter at zero pressure (for saturation()).
* virtual int calc_e_solve_fun (size_t nv, const ovector_base &ex, ovector_base &ey, double x&pa)
The function for calc_e().
* virtual int calc_temp_e_solve_fun (size_t nv, const ovector_base &ex, ovector_base &ey, double *&pa)
The function for calc_temp_e().
* int calc_cr (double sig, double ome, double nb)
Calculate the cr coupling given siqg and ome at the density 'nb’.

Protected Attributes

* double n_charge
Temporary charge density.
* double fe_temp
Temperature for solving field equations at finite temperature.
¢ bool ce_neut_matter
For calc_e(), if true, then solve for neutron matter.
* bool ce_prot_matter
For calc_e(), if true, then solve for proton matter.
* bool guess_set
True if a guess for the fields has been given.
e mroot< int, mm_funct< int > > x sat_mroot
The solver to compute saturation properties.
¢ double ce_temp

The meson fields

* double sigma
* double omega
¢ double rho

5.24.2 Member Function Documentation

5.24.2.1 int calc_cr (double sig, double ome, double nb) [protected]
Calculate the cr coupling given sig and ome at the density 'nb’.

Used by fix_saturation().

5.24.2.2 virtual int calc_e (fermion & ne, fermion & pr, thermo & Ith, double & sig, double & ome, double & rho)
[virtual]

Equation of state as a function of density.

Idea for future

Improve the operation of this function when the proton density is zero.

Todo

Rename this function to distinguish between calc_e()’s
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5.24.2.3 virtual int calc_e (fermion & ne, fermion & pr, thermo & lth) [virtual]
Equation of state as a function of density.

Initial guesses for the chemical potentials are taken from the user-given values. Initial guesses for the fields can be set by set_fields(),
or default values will be used. After the call to calc_e(), the final values of the fields can be accessed through get_fields().

This is a little more robust than the standard version in the parent hadronic_eos.

Idea for future

Improve the operation of this function when the proton density is zero.

Reimplemented from hadronic_eos_temp_pres.

Reimplemented in rmf_delta_eos.

5.24.2.4 virtual int calc_eq_p (fermion & neu, fermion & p, double sig, double ome, double rho, double & f1, double &
f2, double & f3, thermo & th) [virtual]

Equation of state and meson field equations as a function of chemical potentials.

This calculates the pressure and energy density as a function of i, (p, 0,w,ho . When the field equations have been solved, 1,
£2, and £3 are all zero.

The thermodynamic identity is satisfied even when the field equations are not solved.

5.24.2.5 virtual int calc_p (fermion & ne, fermion & pr, thermo & Ith) [virtual]
Equation of state as a function of chemical potential.

Solves for the field equations automatically.

Note:

This may not be too robust. Fix?

Implements hadronic_eos_temp_pres.

5.24.2.6 virtual int calc_temp_p (fermion_T & ne, fermion_T & pr, const double 7, thermo & Ith) [virtual]
Equation of state as a function of chemical potential.
Solves for the field equations automatically.

Implements hadronic_eos_temp_pres.

5.24.2.7 int check_naturalness (rmf_eos & re) [inline]
Set the coefficients of a rmf_eos object to their limits from naturalness.
As given in muller and Serot, npa 606, 508

The definition of the vector-isovector field and coupling matches what is done here. Compare the Lagrangian above with Eq. 10
from the reference.

The following couplings should all be of the same size:

1 1 1 ai _kMi+2j+2k74
, , and —2
2¢2M?’ 2¢2 M2 80§M2 22k
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which are equivalent to
2 2 2 o Nfit2j+2k—4
my m; my, aijiM

L , and ——
293 M?’ 2g3M? 893 M? gigy gak22k

The connection the a;;1 ’s and the coefficients that are used here is

bM 5 4

3
TQUU = Q3000
c
1930 Y= agoo?
¢
ﬂgiw‘l = Qo020 w?
£ 44 4
ﬂgpp = Qoo2 P
blg§w2p2 = apn w2p?
bgg§w4p2 = agy wip?
539§W6P2 = aps w'p?
arg2o'p® = ai o'p’
azg§a2p2 — g1 02p?
aggf,a?’pQ = ago1 03p?
a4g/2)04p2 = ay1 op?
asgiUE)PQ = @501 U5P2
2 6 2 6 2
a6g,0 P = Q601 0 P
Note that Muller and Serot use the notation
=3 3 4
Ky K 3 AGs A 4
=—=bM and =—=c
2 2 Js 6 6 Y
which differs slightly from the "standard" notation above.
We need to compare the values of
m?2 m2 m?2 b ¢

S o) 2 Z L
29ZM? 2g2M? 8g2M?7 37 4

S b] b2M2 b?,]\44 al
247 3847 492 49t 0 4g8 0 49, M

as  asM asM? asM® agM*
4937 4930 4g; 7 4gp 495

and

These values are stored in the variables cs, cw, cr, b, ¢, zeta, xi, bl, etc. in the specified rmf_eos object. All of the numbers should
be around 0.001 or 0.002.

For the scale M, mnuc is used.

Todo

I may have ignored some signs in the above, which are unimportant for this application, but it would be good to fix them for
posterity.

Definition at line 565 of file rmf eos.h.
5.24.2.8 double fcomp_fields (double sig, double ome, double nb)

Calculate the compressibility assuming the field equations have already been solved.

This may only work at saturation density.
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5.24.2.9 double fesym_fields (double sig, double ome, double nb)
Calculate symmetry energy assuming the field equations have already been solved.

This may only work at saturation density. Used by saturation().

5.24.2.10 int field_eqs (size_t nv, const ovector_base & x, ovector_base & y, double x& pa)
A function for solving the field equations.

x[0], x[1], and x[2] should be set to o,w , and p on input (in fm ! ) and on exit, y[0], y[1] and y[2] contain the field equations and
are zero when the field equations have been solved. The pa parameter is ignored.

5.24.2.11 int field_eqsT (size_t nv, const ovector_base & x, ovector_base & y, double x& pa)
A function for solving the field equations at finite temperature.

x[0], x[1], and x[2] should be set to o, w , and p on input (in fm? ) and on exit, y[0], y[1] and y[2] contain the field equations and
are zero when the field equations have been solved. The pa parameter is ignored.

5.24.2.12 int fix_saturation (double guess_cs = 4.0, double guess_cw = 3.0, double guess_b =0.001, double guess_c =
-0.001)

Calculate cs, cw, cr, b, and ¢ from the saturation properties.
Note that the meson masses and mnuc must be specified before calling this function.
This function does not give correct results when bool zm_mode is true.

guess_cs, guess_cw, guess_Db, and guess_c are initial guesses for cs, cw, b, and ¢ respectively.

Todo

¢ Fix this for zm_mode=true

¢ Ensure solver is more robust

5.24.2.13 int fkprime_fields (double sig, double ome, double nb, double & k, double & kprime)
Calculate compressibilty and kprime assuming the field equations have already been solved.

This may only work at saturation density. Used by saturation().

Todo

Does this work? Fix fkprime_fields() if it does not.

5.24.2.14 int get_fields (double & sig, double & ome, double & lrho) [inline]
Return the most recent values of the meson fields.

This returns the most recent values of the meson fields set by a call to saturation(), calc_e(), or calc_p(fermion &, fermion &,
thermo &).

Definition at line 460 of file rmf_eos.h.

5.24.2.15 int load (std::string model, bool external = false)
Load parameters for model named *model’.

Presently accepted values from file rmfdata/model_list:
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word[] models 46

BMPI BMPII FPWC FSUGold L-BF L-HS L-W L-Z L1 L2 L3 NL-06 NL-065 NL-07
NL-075 NL-B1 NL-B2 NL-SH NL-Z NL1 NL2 NL3 NL4 PL-40 PL-Z RAPR RAPRhdp
S271 SR1 SR2 SR3 TM1 TM2 7271 es25 es25nl5 es275 es275n15 es30 es30nl5
es325 es325n15 es35 es35n15 es25small es25new es275new es30new

#

# Comments:

# PL-40 and PL-Z have a special m_infinity parameter that is

# described in P.-G. Reinhard, Rep. Prog. Phys., 52 (1989) 439 that

# I don’t quite understand. For spherld, these need to be run manually
# using the input files in ~/spherld/data.

#

#

In these files, the nucleon and meson masses are by default specified in MeV, and cs, cw, and cr are given in fm. The parameters b
and c are both unitless. If the bool *oakstyle’ is true, then load() assumes that gs, gw, and gr have been given where gs and gw are as
usual, but gr is a factor of two smaller than usual, and g2 and g3 have been given where g2 = -b M gs"3 and g3 = ¢ gs”4. If tokistyle
is true, then it is additionally assumed that c3 is given where c3=zeta/6xgw” 4.

If external is true, then model is the filename (relative to the current directory) of the file containing the model parameters.
Otherwise, the model is assumed to be present in the Oascl library data directory.

5.24.2.16 int naturalness_limits (double value, rmf_eos & re) [inline]
Provide the maximum values of the couplings assuming a limit on naturalness.

The limits for the couplings are function of the nucleon and meson masses, except for the limits on b, ¢, zeta, and xi which are
independent of the masses because of the way that these four couplings are defined.

Definition at line 602 of file rmf_eos.h.

5.24.2.17 virtual int saturation () [virtual]

Calculate properties for nuclear matter at the saturation density.
This requires initial guesses to the chemical potentials, etc.
Reimplemented from hadronic_eos.

Reimplemented in rmf_delta_eos.

5.24.3 Field Documentation

5.24.3.1 gsl_mroot_hybrids<int,mm_funct<int> > def_sat_mroot
The default solver for calculating the saturation density.
Used by fn0() (which is called by saturation()) to solve saturation_matter_e() (1 variable).

Definition at line 644 of file rmf_eos.h.

5.24.3.2 double mnuc
nucleon mass
This need not be exactly equal to the neutron or proton mass, but provides the scale for the coupling b.

Definition at line 228 of file rmf_eos.h.

5.24.3.3 double n_charge [protected]

Temporary charge density.
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Todo

Should use hadronic_eos::proton_frac instead?

Definition at line 655 of file rmf _eos.h.

The documentation for this class was generated from the following file:

e rmf_eos.h

5.25 schematic_eos Class Reference

Schematic hadronic equation of state.
#include <schematic_eos.h>

Inheritance diagram for schematic_eos::

[ s ]

T

| hadronic_eos |

T

| hadronic_eos_eden |

T

| schematic_eos |

5.25.1 Detailed Description

Schematic hadronic equation of state.
Equation of state defined by the energy density:
kprime

(010 < 1% P 0 = 1 4 32 0~ 1 (1= 202 [a () 0 ()]}

6:n{M—|—eoa—|—comp

Symmetry energy at nuclear matter density is a+b.

Note that it doesn’t really matter what kind of particle object is used, since the calc_e() function doesn’t use any of the particle
thermodynamics functions.

Definition at line 52 of file schematic_eos.h.

Public Member Functions

e virtual int calc_e (fermion &In, fermion &lp, thermo &lth)
Equation of state as a function of density.
e virtual int set_kprime_zeroden ()
Set kprime so that the energy per baryon of zero-density matter is zero.
* virtual int set_kpp_zeroden ()
Set kpp so that the energy per baryon of zero-density matter is zero.
e virtual int set_a_from_mstar (double u_msom, double mnuc)
Fix the kinetic energy symmetry coefficient from the nucleon effective mass and the saturation density.
e virtual double eoa_zeroden ()
Return the energy per baryon of matter at zero density.
* virtual const char * type ()
Return string denoting type ("schematic_eos").
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Data Fields

* double a
The kinetic energy symmetry coefficient in inverse fin (default 17/hc).
* double b
The potential energy symmetry coefficient in inverse fm (default 13/hc).
* double kpp
The coefficient of a density to the fourth term (default 0).
* double gamma
The exponent of the high-density symmetry energy (default 1.0).

5.25.2 Member Function Documentation

5.25.2.1 virtual double eoa_zeroden () [inline, virtual]
Return the energy per baryon of matter at zero density.

This is inaccessible from calc_e() so is available separately here. Using set_kprime_zeroden() or set_kpp_zeroden() will fix kprime
or kpp (respectively) to ensure that this is zero.

The result provided here does not include the nucleon mass and is given in fm 1.

Definition at line 125 of file schematic_eos.h.

5.25.2.2 virtual int set_a_from_mstar (double u_msom, double mnuc) [inline, virtual]

Fix the kinetic energy symmetry coefficient from the nucleon effective mass and the saturation density.

This assumes the nucleons are non-relativistic and that the neutrons and protons have equal mass. The relativistic corrections are
around 1 part in 106,

Todo

This was computed in schematic_sym.nb, which might be added to the documentation?

Definition at line 109 of file schematic_eos.h.

5.25.3 Field Documentation

5.25.3.1 double a

The kinetic energy symmetry coefficient in inverse fm (default 17/hc).
The default value corresponds to an effective mass of about 0.7.
Definition at line 63 of file schematic_eos.h.

The documentation for this class was generated from the following file:

¢ schematic_eos.h

5.26 skyrmed4_eos Class Reference

A version of skyrme_eos to separate potential and kinetic contributions.
#include <symé4_eos.h>

Inheritance diagram for skyrme4_eos::
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| 05 |
T

| hadronic_eos |

T

| hadronic_eos _temp |

T

| hadronic_eos_temp_eden |

T

| skyrme_eos | | sym4_eos base
t 1

N
| skyrmed_eos

5.26.1 Detailed Description

A version of skyrme_eos to separate potential and kinetic contributions.

References:
Created for Steiner06.

Definition at line 138 of file sym4_eos.h.

Public Member Functions
e virtual int calc_e_sep (fermion &ne, fermion &pr, double &ed_kin, double &ed_pot, double &mu_n_kin, double &mu_p_-

kin, double &mu_n_pot, double &mu_p_pot)

Compute the potential and kinetic parts separately.

The documentation for this class was generated from the following file:

e sym4_eos.h

5.27 skyrme_eos Class Reference

Skyrme hadronic equation of state at zero temperature.
#include <skyrme_eos.h>

Inheritance diagram for skyrme_eos::
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| e0s |

T

| hadronic_eos |

T

| hadronic_eos_temp |

T

| hadronic_eos temp_eden |

T

| skyrme_eos |

T

| skyrmed_eos |

5.27.1 Detailed Description

Skyrme hadronic equation of state at zero temperature.

Quantities which have units containing powers of energy are divided by /c to ensure all quantities are in units of fm. The x; and «
are unitless, while the original units of the ¢; are:

e to- MeV fm?
o t; - MeV fm®
o ty - MeV fm®
o t3- MeV fm>(1+®)

These are stored internally with units of:

* g - me
et - fm4
* {9 - fm4

o {5 - fm2 T3

The class skyrme_eos_io uses 02scl_const::hc_mev_fm for I/O so that all files contain the parameters in the original units.
The chemical potentials do include the rest mass energy.

n.ed and p.ed contain tau_n and tau_p which are in fm” {-5}, not fm" {-4}.

The functions for the usual saturation properties are based partly on Brack85.

The Hamiltonian is defined below. a = 0,b = 1 gives the standard definition of the Skyrme Hamiltonian (ref?), whilea = 1,6 =0
contains the modifications suggested by Osni94. Check also Dutta86.

H = Hr1 + Hrz + Hiz + Hpr + Hpz + Hpz + Hgr + Hgo

The kinetic terms are:
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s 300500 3)

to (1 t1 (1
His = (Tonpn + Tpnp) [: (2 —|—332) - Zl (2 + 331)]

The potential terms are:

t T
Hp1 = 50 [(1 + —20) n® — (3 + o) (n2 + ni)}
t
Hpo = —a63 [(1 + %3) nnpn, + 272 (1 — a3) (R0 + ng+2)]

bts L3\ a+2 1 o (2 2
HPSZE |:(]_+2>’n, +2 5—’—.@3 n (nn+np)
The gradient terms are displayed here for completeness even though they are not computed in the code:

My = o [t (1= 1) — 12 (14 22)] [(Fn0)* + (T, ]

1
oo = [3t1 (1 + %) —t (1 + %)} Vi, Vi,
A couple useful definitions:
th = (a+b)t3
oo 3 ﬁ 2/3
10m \ 2
M J1
8= ? [4 (3t1 + 5t2) + f2$2:|

Models are taken from the references: Friedrich86, Dutta86, VanGiai81, Chabanat95, Chabanat97, Beiner75, Reinhard95, Bartel79,
Dobaczewski94, Osni94, Tondeur84 and others. Some of the model parameter sets were obtained from Danielewicz08 .

See Mathematica notebook at

doc/o2scl/extras/skyrme_eos.nb
doc/o2scl/extras/skyrme_eos.ps

Finite temperature documentation

The finite temperature extension is performed using the method Prakash97 (see also the Windsurfing the Fermi Sea proceedings by
Prakash).
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Returned chemical potentials include the rest mass, and energy densities include the rest mass energy density.

The variables n.nu and p.nu contain the expressions (-mu_n+V_n)/temper and (-mu_p+V_p)/temper respectively, where V is the
potential part of the single particle energy for particle i (i.e. the derivative of the Hamiltonian wrt density while energy density held
constant). Equivalently, n.nu is just -n.kf"2/2/mstar.

For y>4 we use a non-degenerate expansion, and for y<-40 we use a Sommerfeld expansion. For y>50 the code fails, but this is
well outside the regime of applicability of this model.

Runs the zero temperature code if temper<=0.0.

The finite temperature code does not include attempt to include antiparticles and uses part::calc_density().

Note:

Since this EOS uses the effective masses and chemical potentials in the fermion class, the values of part::non_interacting for
neutrons and protons are set to false in many of the functions.

Todos

Todo

* Make sure that this class properly handles particles for which inc_rest_mass is true/false
* What about the spin-orbit units?

» Need to write a function that calculates saturation density?

* Remove use of mnuc in calparfun()?

¢ The compressibility could probably use some simplification

* Make sure the finite-temperature part is properly tested

* The testing code doesn’t work if err_mode is 2, probably because of problems in load().

Definition at line 227 of file skyrme_eos.h.

Public Member Functions

* skyrme_eos (std::string model)
Load the model named "model’.

e virtual int calc_temp_e (fermion_T &ne, fermion_T &pr, const double temper, thermo &th)
Equation of state as a function of densities.

e virtual int calc_e (fermion &ne, fermion &pr, thermo &It)
Equation of state as a function of density.

* int calpar (double gtO=-10.0, double gt3=70.0, double galpha=0.2, double gt1=2.0, double gt2=-1.0)
Calculate to, t1,t2,ts and o from the saturation properties.

* int load (std::string model, bool external=false)
Load parameters from model 'model’.

* int check_landau (double nb, double m)
Check the Landau parameters for instabilities.

* int landau_nuclear (double n0, double m, double &f0, double &g0, double &fOp, double &g0p, double &f1, double &gl,

double &flp, double &glp)

Calculate the Landau parameters for nuclear matter.

« int landau_neutron (double n0, double m, double &f0, double &g0, double &f1, double &gl)
Calculate the Landau parameters for neutron matter.

* virtual const char * type ()
Return string denoting type ("skyrme_eos").

Saturation properties

These calculate the various saturation properties exactly from the parameters at any density. These routines often assume that
the neutron and proton masses are equal.
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e virtual double feoa (double nb)
Calculate binding energy.
e virtual double fmsom (double nb)
Calculate effective mass.
* virtual double fcomp (double nb)
Calculate compressibility.
* virtual double fesym (const double nb, const double pf=0.5)
Calculate symmetry energy.
* virtual double fkprime (double nb)

skewness

Data Fields

5.27.2

5.27.2

double t0

double t1

double t2

double t3

double x0

double x1

double x2

double x3

double alpha

double a

double b

double WO
Spin-orbit splitting.

bool parent_method
Use hadronic_eos methods for saturation properties.

nonrel_fermion def nr_neutron
Default nonrelativistic neutron.

nonrel_fermion def_nr_proton
Default nonrelativistic proton.

Constructor & Destructor Documentation

.1 skyrme_eos (std::string model)

Load the model named 'model’.

See comments under skyrme_eos::load().

5.27.3

5.27.3

Member Function Documentation

.1 int calpar (double gt0 = -10. 0, double gt3 =70.0, double galpha =0.2, double gt = 2.0, doublegf2=-1.0)

Calculate tg, t1, %9, t3 and o from the saturation properties.

In nuc

lear matter:

Ey = Ey(no, M*, to,t3, )
P= P(no,M*,to,t37a)
K = K(ng, M*,t3, ) (the ty dependence vanishes)

M* = M*(no, t1,t2, z2) (the 21 dependence cancels),

Esym

= Esym(I07I1,CE2, x3,to,t1,12,13, Oé)
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To fix the couplings from the saturation properties, we take ng, M*, F, K as inputs, and we can fix tg, t3, o from the first three
relations, then use M™, F, to fix t2 and ¢;. The separation into two solution steps should make for better convergence. All of the x’s
are free parameters and should be set before the function call.

The arguments gt 0, gt 3, galpha, gt1, and gt 2 are used as initial guesses for t0, t3, alpha, t1, and t2 respectively.

Todo

Does this work for both ’a’ and ’b’ non-zero?

Todo

Compare to similar formulae from Margueron(02

5.27.3.2 int check_landau (double nb, double m)
Check the Landau parameters for instabilities.

This returns zero if there are no instabilities.

5.27.3.3 virtual double fcomp (double nb) [virtual]

Calculate compressibility.

27 5 9t 9t
K = 106’71129/3 + ZtOnB + 40C’ﬁnB/3 + Tg’a (a+1)ng>+ ?3 (a+1)ng™
Reimplemented from hadronic_eos.
5.27.3.4 virtual double feoa (double nb) [virtual]
Calculate binding energy.
3= Cn3f® (1 + fng) + S nB t gengt

5.27.3.5 virtual double fesym (const double nb, const double pf=0.5) [virtual]
Calculate symmetry energy.

If pf=0.5, then the exact expression below is used. Otherwise, the method from class hadronic_eos is used.

5 10C'm to 5 1 i . to
Esym = §Cn2/3 + T |:6 (1 + 41‘2) — 8t11‘1:| 77/5/3 - i (% + Ig) n1+ — Z (% + J:O) n

Reimplemented from hadronic_eos.

5.27.3.6 virtual double fkprime (double nb) [virtual]
skewness

27t}
3,1+

2002 (9 — 5/M* /M) + o

“a (a2 — 1)

Reimplemented from hadronic_eos.
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5.27.3.7 virtual double fmsom (double nb) [virtual]

Calculate effective mass.

M*/M = (1+ fng)”"

5.27.3.8 int landau_neutron (double 70, double m, double & f0, double & g0, double & f1, double & gI)
Calculate the Landau parameters for neutron matter.

Given 'n0’ and *m’, this calculates the Landau parameters in neutron matter as given in Margueron02

Todo
This needs to be checked

(Checked once on 11/05/03)

5.27.3.9 int landau_nuclear (double n0, double m, double & f0, double & g0, double & fOp, double & glp, double & f1,
double & g1, double & fIp, double & glp)

Calculate the Landau parameters for nuclear matter.

Given n0 and m, this calculates the Landau parameters in nuclear matter as given in Margueron02

Todo
This needs to be checked.

(Checked once on 11/05/03)

5.27.3.10 int load (std::string model, bool external = false)
Load parameters from model *'model’.

Presently accepted values from file skdata/model_list:

word[] models 164

a b BSkl BSk10 BSk1ll BSkl2 BSk13 BSk14 BSkl6 BSk2 BSk2p BSk3
BSk4 BSk5 BSk6 BSk7 BSk8 BSk9 E Es FitA FitB FitK FitKs FitL
Gs KDEOv KDEOvl LNS Ly5 MSkl MSk2 MSk3 MSk4 MSk5 MSk5s MSk6
MSk7 MSk8 MSk9 MSKA mst0.81 mst0.90 mstl NRAPR NRAPR2 PeEVs
PeHF PeSIs QMC1l QMC2 QMC3 RATP Rs SGI SGII SI SII SIII SIIIs
SIp SIV SK255 SK272 SkI1 SkI2 SkI3 SkI4 SkI5 SkI6 SkkT8 SkM
SkM1 SkMDIxO SkMDIx1l SkMDIxml SkMDIxm2 SkMP SkMs SkNF1 SkNF2
SkO SkOp SkP SKRA SkSC1l SkSC10 SkSC1ll SkSC14 SkSC1l5 SkSC2
SkSC3 SkSC4 SksC4o SkSC5 SksSC6 SkT SkT1l SkTls SkT2 SkT3 SkT3s
SkT4 SkT5 SkT6 SkT7 SkT8 SkT9 SkTK SkX SkXce SkXm Skxsl5
Skxs20 Skxs25 Skyrmelp SKz0 SKzl SKz2 SKz3 SKz4 SKzml SLyO
SLyl SLyl0 SLy2 SLy230a SLy230b SLy3 SLy4 SLy5 SLy6 SLy7 SLy8
SLy9 SV SVI SVII SV-K241 SV-kap06 SV-masl0 SV-sym32 SV-bas
SV-K218 SV-kap00 SV-mas07 SV-min SV-sym34 SV-K226 SV-kap02
SV-mas08 SV-sym28 SV-tls T v070 v075 v080 v090 v100 v105 v110 Z
Zs Zss

If external is true, then model is the filename (relative to the current directory) of the file containing the model parameters
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5.27.4 Field Documentation

5.27.4.1 bool parent_method
Use hadronic_eos methods for saturation properties.
This can be set to true to check the difference between the exact expressions and the numerical values from class hadronic_eos.

Definition at line 385 of file skyrme_eos.h.

5.27.4.2 double W0

Spin-orbit splitting.

This is unused, but included for possible future use and present in the internally stored models.
Definition at line 238 of file skyrme_eos.h.

The documentation for this class was generated from the following file:

* skyrme_eos.h

5.28 sym4_eos Class Reference

Construct an EOS with an arbitrary choice for the terms in the symmetry energy that are quartic in the isospin asymmetry.
#include <sym4_eos.h>

Inheritance diagram for sym4_eos::

| hadronic_eos |

T

| hadronic_eos_eden |

T

| sym4_eos |

5.28.1 Detailed Description

Construct an EOS with an arbitrary choice for the terms in the symmetry energy that are quartic in the isospin asymmetry.

References:
Created for Steiner06.

Definition at line 192 of file sym4_eos.h.

Public Member Functions

* int set_base_eos (sym4_eos_base &seb)
Set the base equation of state.

e virtual int test_eos (fermion &ne, fermion &pr, thermo &lth)
Test the equation of state.

e virtual int calc_e (fermion &ne, fermion &pr, thermo &lth)
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Equation of state as a function of density.

Data Fields

* double alpha
The strength of the quartic terms.

Protected Attributes

e sym4_eos_base * Sp
The base equation of state to use.

5.28.2 Member Function Documentation

5.28.2.1 virtual int test_eos (fermion & ne, fermion & pr, thermo & lth) [virtual]

Test the equation of state.

This compares the chemical potentials from calc_e_sep() to their finite-difference approximations in order to ensure that the separa-

tion into potential and kinetic parts is done properly.

The documentation for this class was generated from the following file:

e sym4_eos.h

5.29 sym4_eos_base Class Reference

A class to compute quartic contributions to the symmetry energy [abstract base].
#include <sym4_eos.h>

Inheritance diagram for sym4_eos_base::

| sym4_eos base |

i
l l l |

aprd_eos || mdi4_eos || rmf4_eos || skyrme4_eos

5.29.1 Detailed Description

A class to compute quartic contributions to the symmetry energy [abstract base].

The standard usage is that a child class implements the virtual function calc_e_sep() which is then used by calc_e_alpha() and calc_-
muhat(). These functions are employed by sym4_eos to compute the EOS for an arbitrary dependence of the symmetry energy on

the isospin.

References:
Created for Steiner06.

Definition at line 52 of file sym4_eos.h.
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Public Member Functions

* virtual int calc_e_alpha (fermion &ne, fermion &pr, thermo &lth, double &alphak, double &alphap, double &alphat, double

&diff_kin, double &diff_pot, double &ed_kin_nuc, double &ed_pot_nuc)

Compute alpha at the specified density.

* virtual double calc_muhat (fermion &ne, fermion &pr)

Compute [i, the out-of-whack parameter.

* virtual int calc_e_sep (fermion &ne, fermion &pr, double &ed_kin, double &ed_pot, double &mu_n_kin, double &mu_p_-

kin, double &mu_n_pot, double &mu_p_pot)=0

Compute the potential and kinetic parts separately (to be overwritten in children).

Protected Attributes

* fermion e
An electron for the computation of the fi.

The documentation for this class was generated from the following file:

* sym4_eos.h

5.30 tabulated_eos Class Reference

EOS from a table.
#include <tabulated_eos.h>

Inheritance diagram for tabulated_eos::

5.30.1 Detailed Description

EOS from a table.

[ s |

T

| hadronic_eos |

T

| hadronic_eos_eden |

T

| tabulated_eos |

This assumes a symmetry energy which depends quadratically on the isospin asymmetry in order to construct an EOS from a table

of baryon density and energy per baryon for both nuclear and pure neutron matter.

Note: If using a tabulated EOS to compute derivatives (like the compressibility which effectively requires a second derivative),
it is important to tabulated the EOS precisely enough to ensure that the derivatives are accurate. In the case of ensuring that the
compressibility at saturation density is well reproduced, I have needed the EOS to be specified with at least 6 digits of precision on

a grid at least as small as 0.002 fm .

Definition at line 53 of file tabulated_eos.h.
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Public Member Functions

¢ int free_table ()
e virtual int calc_e (fermion &ne, fermion &pr, thermo &th)
Equation of state as a function of density.
* template<class vec_t >
int set_eos (size_t n, vec_t &rho, vec_t &Enuc, vec_t &Eneut)
Set the EOS through vectors specifying the densities and energies.
* template<class vec_t >
int set_eos (size_t n_nuc, vec_t &rho_nuc, vec_t &E_nuc, size_t n_neut, vec_t &rho_neut, vec_t &E_neut)
Set the EOS through vectors specifying the densities and energies.
* table & get_nuc_table ()
Return the internal table.
* table & get_neut_table ()
Return the internal table.

Protected Attributes

* bool table_alloc
True if the table has been allocated.
* bool one_table
If true, then tnuc and tneut point to the same table.

The EOS tables

e table * tnuc
¢ table * tneut

Strings for the column names

std::string srho_nuc
std::string srho_neut
std::string snuc
std::string sneut

The documentation for this class was generated from the following file:

¢ tabulated_eos.h

5.31 tov_buchdahl_eos Class Reference

The Buchdahl EOS for the TOV solver.
#include <tov_eos.h>

Inheritance diagram for tov_buchdahl_eos::

tov_eos

tov_buchdahl_eos
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5.31.1 Detailed Description

The Buchdahl EOS for the TOV solver.

Given the eos
p=12+/p.P — 5P

the TOV equation has an analytical solution
I

R 288p.G(1 — 28)

(1-5)

where § = GM/R.

The central pressure and energy density are
P. = 36p. 3>

pe =T2p. (1 —55/2)
Physical solutions are obtained only for P < 25p,. /144 and 5 < 1/6 .
(Lattimer & Prakash, 2001)

Todo

Fix the reference above

Idea for future

Figure out what to do with the buchfun() function

Definition at line 324 of file tov_eos.h.

Public Member Functions

* virtual int get_eden (double P, double &e, double &nb)
Given the pressure, produce the energy and number densities.

* virtual int get_aux (double P, size_t &np, ovector_base &auxp)
Given the pressure, produce all the remaining quantities.

e virtual int get_names (size_t &np, std::vector< std::string > &pnames)
Fill a list with strings for the names of the remaining quanities.

Data Fields

* double Pstar
The parameter with units of pressure in units of solar masses per km cubed (default value 3.2 x 1075 ).

5.31.2 Member Function Documentation

5.31.2.1 virtual int get_eden (double P, double & e, double & nb) [inline, virtual]
Given the pressure, produce the energy and number densities.

If the baryon density is not specified, it should be set to zero or baryon_column should be set to false
Reimplemented from tov_eos.

Definition at line 347 of file tov_eos.h.

The documentation for this class was generated from the following file:

e tov_eos.h
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5.32 tov_eos Class Reference

A EOS base class for the TOV solver.
#include <tov_eos.h>

Inheritance diagram for tov_eos::

| tov_eos |

f
l

tov_buchdahl_eos| | tov_interp_eos | |t0v _polytrope_eos

5.32.1 Detailed Description

A EOS base class for the TOV solver.

Definition at line 54 of file tov_eos.h.

Public Member Functions

* virtual int get_eden (double P, double &e, double &nb)
Given the pressure, produce the energy and number densities.

* virtual int get_aux (double P, size_t &np, ovector_base &auxp)
Given the pressure, produce all the remaining quantities.

* virtual int get_names (size_t &np, std::vector< std::string > &pnames)
Fill a list with strings for the names of the remaining quanities.

Data Fields

* int verbose
control for output (default 1)
* bool baryon_column
Set to true if the baryon density is provided in the EOS (default false).

5.32.2 Member Function Documentation

5.32.2.1 virtual int get_eden (double P, double & ¢, double & nb) [inline, virtual]
Given the pressure, produce the energy and number densities.

If the baryon density is not specified, it should be set to zero or baryon_column should be set to false
Reimplemented in tov_interp_eos, tov_buchdahl_eos, and tov_polytrope_eos.

Definition at line 74 of file tov_eos.h.

The documentation for this class was generated from the following file:

e tov_eos.h

5.33 tov_interp_eos Class Reference

An EOS for the TOV solver using simple linear interpolation and a default low-density EOS.
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#include <tov_eos.h>

Inheritance diagram for tov_interp_eos::

tov_eos

tov_interp_eos

5.33.1 Detailed Description

An EOS for the TOV solver using simple linear interpolation and a default low-density EOS.

Internally, energy and pressure are stored in units of solar masses per cubic kilometer and baryon density is stored in units of fm” {-
3}. The user-specified EOS table is left as is, and unit conversion is performed as needed in get_eden() and other functions so that
results are returned in the units specified by set_units().

The function set_units() needs to be called before either of the functions get_eden() or get_eden_ld() are called. The function
set_units() may be called after calling either the read_table() functions or the set_low_density_eos() function.

Definition at line 118 of file tov_eos.h.

Public Member Functions

* virtual int get_eden (double pres, double &ed, double &nb)
Given the pressure, produce the energy and number densities.

* virtual int get_eden_user (double pres, double &ed, double &nb)
Given the pressure, produce the energy and number densities from the user-specified EOS.

* virtual int get_eden_ld (double pres, double &ed, double &nb)
Given the pressure, produce the energy and number densities from the low-density EOS.

e virtual int get_aux (double P, size_t &nv, ovector_base &auxp)
Given the pressure, produce all the remaining quantities.

e virtual int get_names (size_t &np, std::vector< std::string > &pnames)
Fill a list with strings for the names of the remaining quanities.

* int read_table (table &eosat, std::string s_cole="ed", std::string s_colp="pr", std::string s_colnb="nb")
Specify the EOS through a table.

* int read_table_file (std::string eosfn, std::string s_cole="ed", std::string s_colp="pr", std::string s_colnb="nb")
Specify the EOS through a table in a file.

* int set_low_density_eos (bool s_ldeos, std::string s_nvpath, int s_nvcole=0, int s_nvcolp=1, int s_nvcolnb=2)
Set the low-density EOS.

* int set_units (double s_efactor, double s_pfactor, double s_nfactor)
Set the units of the user-specified EOS.

* int set_units (std::string leunits="", std::string lpunits=
Set the units of the user-specified EOS.

* int get_transition (double &plow, double &ptrans, double &phi)
Return limiting and transition pressures.

* int set_transition (double ptrans, double pw)
Set the transition pressure and "width".

"

, std::string Inunits="")

Protected Member Functions

e int check_eos ()
Check that the EOS is valid.

* void interp (const ovector_base &x, const ovector_base &y, double xx, double &yy, int nl, int n2)
Linear EOS interpolation.
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Protected Attributes

¢ base_ioc bio
A base I/0 object for reading EOSs.
* table_units_io_type table_units_io
For reading the table.

Low-density EOS

* bool ldeos
true if we are using the low-density eos (false)
* bool ldeos_read
Low-density EOS switch.
e std::string 1dpath
the path to the low-density EOS
* int Idcole
column in low-density eos for energy density
* int Idcolp
column in low-density eos for pressure
* int ldcolnb
column in low-density eos for baryon density
e table_units * Id_eos
file containing low-density EOS
* double presld
highest pressure in low-density EOS
* double eld
highest energy density in low-density EOS
* double nbld
highest baryon density in low-density EOS
* double prest
Transition pressure.
* double pwidth

Transition width.

User EOS

* table x eost
file containing eos
* int nfile
number of lines in eos file
* int cole
column for energy density in eos file
* int colp
column for pressure in eos file
* int colnb

column for baryon density in eos file
¢ bool eos_read

True if an EOS has been specified.
Units

* std::string eunits
Units for energy density.
e std::string punits
Units for pressure.
* std::string nunits
Units for baryon density.
* double efactor
unit conversion factor for energy density (default 1.0)
* double pfactor
unit conversion factor for pressure (default 1.0)
* double nfactor
unit conversion factor for baryon density (default 1.0)
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5.33.2 Member Function Documentation

5.33.2.1 int get_transition (double & plow, double & ptrans, double & phi)
Return limiting and transition pressures.

Returns, in order:

* the highest pressure in the low-density EOS
* the transition pressure

¢ the lowest pressure in the high-density EOS

5.33.2.2 int set_transition (double ptrans, double pw)
Set the transition pressure and "width".

Sets the transition pressure and the width (specified as a number greater than unity in pw) of the transition between the two EOSs.
The transition is done smoothly using linear interpolation between P = ptrans/pmathrmpw and P = ptrans X pmathrmpuw.

5.33.3 Field Documentation

5.33.3.1 boolldeos_read [protected]
Low-density EOS switch.

This is t rue if the 1deos has been read by set_ldeos. This is useful, since then we know whether or not we need to free the memory
for the LD EOS in the destructor

Definition at line 221 of file tov_eos.h.

The documentation for this class was generated from the following file:

e tov_eos.h

5.34 tov_polytrope_eos Class Reference

Standard polytropic EOS p = K p'*+1/".
#include <tov_eos.h>

Inheritance diagram for tov_polytrope_eos::

tov_eos

tov_polytrope eos

5.34.1 Detailed Description

Standard polytropic EOS p = K p'*+1/7.

Any units are permissible, but if this is to be used with tov_solve, then the units of K must be consistent with the units set in
tov_solve::set_units().

Definition at line 391 of file tov_eos.h.
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Public Member Functions

* virtual int get_eden (double P, double &e, double &nb)
Given the pressure, produce the energy and number densities.

* virtual int get_aux (double P, size_t &np, ovector_base &auxp)
Given the pressure, produce all the remaining quantities.

e virtual int get_names (size_t &np, std::vector< std::string > &pnames)
Fill a list with strings for the names of the remaining quanities.

Data Fields

¢ double K

Coefficient (default 1.0).
* double n

Index (default 3.0).

5.34.2 Member Function Documentation

5.34.2.1 virtual int get_eden (double P, double & ¢, double & nb) [inline, virtual]
Given the pressure, produce the energy and number densities.

If the baryon density is not specified, it should be set to zero or baryon_column should be set to false
Reimplemented from tov_eos.

Definition at line 416 of file tov_eos.h.

The documentation for this class was generated from the following file:

e tov_eos.h

5.35 tov_solve Class Reference

Class to solve the Tolman-Oppenheimer-Volkov equations.

#include <tov_solve.h>

5.35.1 Detailed Description

Class to solve the Tolman-Oppenheimer-Volkov equations.
Integrate Tolman-Oppenheimer-Volkov (TOV) equations

The present code, as demonstrated in the tests, gives the correct central pressure and energy density of the analytical solution by
Buchdahl to within less than 1 part in 10°.

The TOV equations (i.e. Einstein’s equations for a static spherically symmetric object) are

20— A
o mree
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where r is the radial coordinate, m(r) is the mass enclosed within a radius r, and () and P(r) are the energy density and pressure
at r, and G is the gravitational constant. The boundary conditions are m(r = 0) = 0 the condition P(r = R) = 0 for some fixed
radius R. These boundary conditions give a series of solutions to the TOV equations as a function of the radius, although they do not
necessarily have a solution for all radii.
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The gravitational mass is given by
R
Mg = / Anr2edr
0

while the baryonic mass is given by

R —-1/2
G
Mp = / drr’ngmpg (1 — m) dr
0 r

where np(r) is the baryon number density at radius r and mp is the mass of one baryon.

The gravitational potential, ®(r) can be determined from

dd 1dP( P>‘1
— 1+

dr ~ edr

9

The proper boundary condition for the gravitational potential is

CD(r:R):;hq(l—W)

The equation of state may be changed at any time.
Note that the pressure in the low-density eos is not strictly increasing! (see at P=4.3e-10)

The surface gravity is computed as
GM (1 2GM>1/2

9= R R

which is given in inverse kilometers and the redshift is

which is unitless.

Screen output

* verbose=0 - Nothing (even if an error occurs).
* verbose=1 - Some basic information and any errors or warnings.
* verbose=2 - For each profile computation, information at every kilometer.

* verbose=3 - Profile information every 20 grid points. A keypress is required after each profile.

Note:

The function star_fun() returns gs1_efailed without calling the error handler in the case that the solver can recover gracefully
from, for example, a negative pressure.

Todo

¢ The error handler is called in tov_solve()derivs for pressures less than the minimum even in normal circumstances. This
should be fixed, so that errors are more rare

* baryon mass doesn’t work for fixed() (This may be fixed. We should make sure it’s tested.)

¢ Combine maxoutsize and kmax?

* Document column naming issues

* Document surface gravity and redshift

Idea for future

¢ Turn numbers in max() function into variables

Definition at line 146 of file tov_solve.h.
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Public Member Functions

e int solution_check ()
Check the solution (unfinished).

* int set_units (double s_efactor=1.0, double s_pfactor=1.0, double s_nbfactor=1.0)
Set units.

* int set_units (std::string eunits=
Set units.

e int set_kmax (int s_maxoutsize=400, int s_kmax=40000)
Set maximum storage for integration.

e int set_cos (tov_eos &ter)
Set the EOS to use.

* int set_mroot (mroot< int, mm_funct< int > > &s_mrp)
Set solver.

* int set_minimize (minimize< int, funct< int > > &s_mp)
Set minimizer.

* int set_stepper (adapt_step< int, ode_funct< int > > &sap)
Set the adaptive stepper.

"nn "nn

, std::string punits="", std::string nunits="")

Results

* table_units & get_results ()
Return the results data table.

Actual solution of equations

e int mvsr ()

Calculate the mass vs. radius curve.
« int fixed (double d_tmass)

Calculate the profile of a star with fixed mass.
¢ int max ()

Calculate the profile of the maximum mass star.

Data Fields

¢ gsl_min_brent< int, funct< int > > def_min
The default minimizer.

¢ gsl_mroot_hybrids< int, mm_funct< int > > def_solver
The default solver.

 gsl_astep< int, ode_funct< int > > def_stepper
The default adaptive stepper.

* bool compute_ang_vel
If true, compute the angular velocity (default false).

* double cap_omega
The angular velocity.

* double schwarz_km
The schwarzchild radius in km.

Basic properties

¢ double mass
mass

¢ double rad
radius

¢ double bmass
baryonic mass

* double gpot

gravitational potential
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Solution parameters

* bool generel
Use general relativistic version (default true).
* bool calcgpot
calculate the gravitational potential and the enclosed baryon mass (default false)
* double hmin
smallest allowed radial stepsize (default 1.0e-4)
* double hmax
largest allowed radial stepsize (default 0.05)
* double hstart
initial radial stepsize (default 4.0e-3)
* int verbose
control for output (default 1)
* double maxradius
maximum radius for integration in km (default 60)

Mass versus radius parameters

* double prbegin
Beginning pressure (default 7.0e-7).
* double prend
Ending pressure (default 8.0e-3).
* double princ
Increment for pressure (default 1.1).
* bool logmode
Use ’'princ’ as a multiplier, not an additive increment (default true).
* double prguess
Guess for central pressure in solar masses per km3 (default 5.2 x 107°).

Fixed mass parameters

¢ double tmass
Target mass.

Protected Member Functions

* int make_unique_name (std::string &col, std::vector< std::string > &cnames)
Ensure col does not match strings in cnames.
* virtual int derivs (double x, size_t nv, const ovector_base &y, ovector_base &dydx, int &pa)
The ODE step function.
* virtual int derivs_ang_vel (double x, size_t nv, const ovector_base &y, ovector_base &dydx, int &pa)
The ODE step function for the angular velocity.
* virtual int profile_out (double xx)
Output a stellar profile.
* virtual double maxfun (double maxx, int &pa)
The minimizer function to compute the maximum mass.
* virtual int starfun (size_t ndvar, const ovector_base &ndx, ovector_base &ndy, int &pa)
The solver function to compute the stellar profile.
* int ang_vel ()
Compute the angular velocity.

Protected Attributes

* (OV_eos *x te
The EOS.
¢ bool eos_set
True if the EOS has been set.
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* base_ioc bio
Define some necessary 1/0 objects.
* int kmax
maximum storage size (default 40000)
* int maxoutsize
maximum size of output file (default 400)
¢ double presmin
Smallest allowed pressure for integration (default: -100).
* table_units out_table
The output table.
e mroot< int, mm_funct< int > > * mroot_ptr
The solver.
* minimize< int, funct< int > > x min_ptr
The minimizer.
¢ adapt_step< int, ode_funct< int > > x as_ptr
The default adaptive stepper.
e smart_interp smi
Interpolation object for derivs_ang_vel().

User EOS

* std::string eunits
Units for energy density.
* std::string punits
Units for pressure.
* std::string nunits
Units for baryon density.
* double efactor
unit conversion factor for energy density (default 1.0)
* double pfactor
unit conversion factor for pressure (default 1.0)
* double nfactor
unit conversion factor for baryon density (default 1.0)

Integration storage

* ovector rky [6]
¢ ovector rkx
* ovector rkdydx [6]

5.35.2 Member Function Documentation

5.35.2.1 intset_kmax (int s_maxoutsize = 400, int s_kmax = 40000)
Set maximum storage for integration.

The variable s_kmax is the maximum number of radial integration stepsk while s_maxout size is the maximum number of points
that will be output for any profile.

If s_kmax is less than zero, there is no limit on the number of radial steps.

5.35.2.2 int set_units (std::string eunits = " ", std::string punits = " ", std::string nunits =" ")
Set units.

Valid entries for the units of energy density and pressure are:

* "g/lem”3"

* "erg/cm”3"
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* "MeV/fm”3"
° nfm/\_4n

* "Msun/km”3" (i.e. solar masses per cubic kilometer)
Valid entries for the units of baryon density are:

. nm/\_3n
° ncm/\_SH

° nfm/\_3vv

5.35.3 Field Documentation

5.35.3.1 base_iocbio [protected]

Define some necessary I/O objects.

Idea for future

Is this really required?

Definition at line 343 of file tov_solve.h.

5.35.3.2 bool generel
Use general relativistic version (default true).
These parameters can be changed at any time.

Definition at line 167 of file tov_solve.h.

5.35.3.3 double presmin [protected]
Smallest allowed pressure for integration (default: -100).
This can’t be much smaller since we need to compute numbers near exp(-presmin)

Definition at line 372 of file tov_solve.h.

5.35.3.4 double prguess
Guess for central pressure in solar masses per km3 (default 5.2 x 107°).
This guess is used in the function fixed().

Definition at line 200 of file tov_solve.h.

5.35.3.5 double tmass
Target mass.

Use negative values to indicate a mass measured relative to the maximum mass. For example, if the EOS has a maximum mass of
2.0, then -0.15 will give the profile of a 1.85 solar mass star.

Definition at line 213 of file tov_solve.h.

The documentation for this class was generated from the following file:

e tov_solve.h




Index

a
schematic_eos, 70
acausal
cold_nstar, 31
acausal_ed
cold_nstar, 31
acausal_pr
cold_nstar, 31
allow_urca
cold_nstar, 31
aprd_eos, 9
apr_eos, 10
fcomp, 13
fesym_diff, 13
gradient_qij2, 13
parent_method, 14
select, 13

bag_eos, 14
calc_temp_e, 15
calc_temp_p, 15

bio
tov_solve, 92

bps_eos, 15
calc_density, 17
calc_pressure, 17
e, 17
mass_formula, 17

calc_cr

rmf_eos, 64
calc_density

bps_eos, 17

nse_eos, 56
calc_e

rmf_eos, 64
calc_edensity

hadronic_eos, 40
calc_eq_e

ddc_eos, 33
calc_eq_p

rmf_eos, 65
calc_eq_temp_p

cfl6_eos, 20

cfl_njl_eos, 25
calc_esym

hadronic_eos, 40, 41
calc_mu

nse_eos, 56
calc_p

nambujl_eos, 53

rmf_eos, 65
calc_press_on2

hadronic_eos, 41
calc_pressure

bps_eos, 17

hadronic_eos, 41
calc_temp_e

bag_eos, 15
calc_temp_p

bag_eos, 15

nambujl_eos, 53

rmf_eos, 65
calc_urca

cold_nstar, 30
calpar

skyrme_eos, 75
cfl6_eos, 18

calc_eq_temp_p, 20

eigenvalues6, 20

make_matrices, 21
cfl_njl_eos, 21

calc_eq_temp_p, 25

def_quartic, 26

eigenvalues, 25

gap_limit, 26

gapped_eigenvalues, 25

GD, 26
inte_epsabs, 27
inte_epsrel, 27
inte_npoints, 27
integrands, 25
set_parameters, 26
zerot, 27
check_landau
skyrme_eos, 76
check_naturalness
rmf_eos, 65
cold_nstar, 27
acausal, 31
acausal_ed, 31
acausal_pr, 31
allow_urca, 31
calc_urca, 30
deny_urca, 31
min_bad, 31
set_eos, 30
set_n_and_p, 30
set_tov, 30

ddc_eos, 31
calc_eq_e, 33

def deriv
hadronic_eos, 44

def_deriv2
hadronic_eos, 44



INDEX

94

def_mroot
hadronic_eos, 44

def_quartic
cfl_njl_eos, 26

def_sat_mroot
rmf_eos, 68

def sat_root
hadronic_eos, 44

deny_urca
cold_nstar, 31

bps_eos, 17
eigenvalues

cfl_njl_eos, 25
eigenvalues6

cfl6_eos, 20
eoa_zeroden

schematic_eos, 70
€os, 33

fcomp

apr_eos, 13

hadronic_eos, 41

skyrme_eos, 76
fcomp_fields

rmf_eos, 66
feoa

hadronic_eos, 41

skyrme_eos, 76
fesym

hadronic_eos, 41

skyrme_eos, 76
fesym_diff

apr_eos, 13

hadronic_eos, 41
fesym_fields

rmf_eos, 66
fesym_slope

hadronic_eos, 41
field_eqs

rmf_eos, 67
field_eqsT

rmf_eos, 67
fix_saturation

rmf_eos, 67
fkprime

hadronic_eos, 42

skyrme_eos, 76
fkprime_fields

rmf_eos, 67
fmsom

hadronic_eos, 42

skyrme_eos, 76
fn0

hadronic_eos, 42

fromqq
nambujl_eos, 54
fsprime
hadronic_eos, 42

gap_limit
cfl_njl_eos, 26
gapfunms
nambujl_eos, 53
gapfunmsT
nambujl_eos, 53
gapfunqq
nambujl_eos, 53
gapfunqqT
nambujl_eos, 53
gapped_eigenvalues
cfl_njl_eos, 25
GD
cfl_njl_eos, 26
gen_potential_eos, 34
generel
tov_solve, 92
get_eden

tov_buchdahl_eos, 82

tov_eos, 83

tov_polytrope_eos, 87

get_fields
rmf_eos, 67
get_transition
tov_interp_eos, 86
gradient_qjij
hadronic_eos, 42
gradient_qij2
apr_eos, 13

hadronic_eos, 38
calc_edensity, 40
calc_esym, 40, 41
calc_press_on2, 41
calc_pressure, 41
def_deriv, 44
def_deriv2, 44
def_mroot, 44
def_sat_root, 44
fcomp, 41
feoa, 41
fesym, 41
fesym_diff, 41
fesym_slope, 41
fkprime, 42
fmsom, 42
fn0, 42
fsprime, 42
gradient_qij, 42

saturation_matter_e, 43

set_sat_deriv2, 44




INDEX

95

hadronic_eos_eden, 44
hadronic_eos_pres, 45
hadronic_eos_temp, 46

hadronic_eos_temp_eden, 47

hadronic_eos_temp_pres, 48

inte_epsabs
cfl_njl_eos, 27
inte_epsrel
cfl_njl_eos, 27
inte_npoints
cfl_njl_eos, 27
integrands
cfl_njl_eos, 25

landau_neutron
skyrme_eos, 77
landau_nuclear
skyrme_eos, 77
Ideos_read
tov_interp_eos, 86
limit
nambujl_eos, 54
load
rmf_eos, 67
skyrme_eos, 77

make_matrices
cfl6_eos, 21
mass_formula
bps_eos, 17
mdi4_eos, 49
min_bad
cold_nstar, 31
mnuc
rmf_eos, 68

n_charge
rmf_eos, 68
nambujl_eos, 50
calc_p, 53
calc_temp_p, 53
fromqq, 54
gapfunms, 53
gapfunmsT, 53
gapfunqq, 53
gapfunqqT, 53
limit, 54
set_parameters, 53
set_quarks, 54
nambujl_eos::njtp_s, 54
naturalness_limits
rmf_eos, 68
nse_eos, 55
calc_density, 56
calc_mu, 56

parent_method
apr_eos, 14
skyrme_eos, 78
presmin
tov_solve, 92
prguess
tov_solve, 92

quark_eos, 56

rmf4_eos, 57

rmf_delta_eos, 58
saturation, 59

rmf_eos, 60
calc_cr, 64
calc_e, 64
calc_eq_p, 65
calc_p, 65
calc_temp_p, 65
check_naturalness, 65
def_sat_mroot, 68
fcomp_fields, 66
fesym_fields, 66
field_eqs, 67
field_eqsT, 67
fix_saturation, 67
fkprime_fields, 67
get_fields, 67
load, 67
mnuc, 68
n_charge, 68
naturalness_limits, 68
saturation, 68

saturation
rmf_delta_eos, 59
rmf_eos, 68
saturation_matter_e
hadronic_eos, 43
schematic_eos, 69
a, 70
eoa_zeroden, 70
set_a_from_mstar, 70
select
apr_eos, 13
set_a_from_mstar
schematic_eos, 70
set_eos
cold_nstar, 30
set_kmax
tov_solve, 91
set_n_and_p
cold_nstar, 30
set_parameters
cfl_njl_eos, 26
nambujl_eos, 53




INDEX

96

set_quarks
nambujl_eos, 54
set_sat_deriv2
hadronic_eos, 44
set_tov
cold_nstar, 30
set_transition
tov_interp_eos, 86
set_units
tov_solve, 91
skyrme4_eos, 70
skyrme_eos, 71
calpar, 75
check_landau, 76
fcomp, 76
feoa, 76
fesym, 76
fkprime, 76
fmsom, 76
landau_neutron, 77
landau_nuclear, 77
load, 77
parent_method, 78
skyrme_eos, 75
skyrme_eos, 75
WO, 78
sym4_eos, 78
test_eos, 79
sym4_eos_base, 79

tabulated_eos, 80
test_eos

sym4_eos, 79
tmass

tov_solve, 92
tov_buchdahl_eos, 81

get_eden, 82
tov_eos, 83

get_eden, 83
tov_interp_eos, 83

get_transition, 86

Ideos_read, 86

set_transition, 86
tov_polytrope_eos, 86

get_eden, 87
tov_solve, 87

bio, 92

generel, 92

presmin, 92

prguess, 92

set_kmax, 91

set_units, 91

tmass, 92

WO
skyrme_eos, 78

zerot

cfl_njl_eos, 27




	Main Page
	Quick Reference to User's Guide
	Hadronic equations of state
	Equations of state of quark matter
	Solution of the Tolman-Oppenheimer-Volkov equations
	Naive Cold Neutron Stars
	Non-relativistic Finite Temperature Approximations
	Example source code
	Other Todos
	Bibliography

	Ideas for future development
	Todo List
	Bug List
	Data Structure Documentation
	apr4_eos Class Reference
	apr_eos Class Reference
	bag_eos Class Reference
	bps_eos Class Reference
	cfl6_eos Class Reference
	cfl_njl_eos Class Reference
	cold_nstar Class Reference
	ddc_eos Class Reference
	eos Class Reference
	gen_potential_eos Class Reference
	hadronic_eos Class Reference
	hadronic_eos_eden Class Reference
	hadronic_eos_pres Class Reference
	hadronic_eos_temp Class Reference
	hadronic_eos_temp_eden Class Reference
	hadronic_eos_temp_pres Class Reference
	mdi4_eos Class Reference
	nambujl_eos Class Reference
	nambujl_eos::njtp_s Struct Reference
	nse_eos Class Reference
	quark_eos Class Reference
	rmf4_eos Class Reference
	rmf_delta_eos Class Reference
	rmf_eos Class Reference
	schematic_eos Class Reference
	skyrme4_eos Class Reference
	skyrme_eos Class Reference
	sym4_eos Class Reference
	sym4_eos_base Class Reference
	tabulated_eos Class Reference
	tov_buchdahl_eos Class Reference
	tov_eos Class Reference
	tov_interp_eos Class Reference
	tov_polytrope_eos Class Reference
	tov_solve Class Reference


