Ogscl_part - Particle Sub-Library for Osscl

Version 0.902

Copyright © 2006, 2007, 2008, 2009 Andrew W. Steiner

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled “License Information”.

Contents

1 Main Page 1
1.1 Quick Reference to User’'s Guide e 1
1.2 Particles e 1
1.3 Atomicnuclel L e e e e e 2
1.4 Example source codeo e e e 3
1.5 Bibliography e 5

2 Ideas for future development 5

3 Todo List 6

4 Data Structure Documentation 7
4.1 ame_entry Struct Reference L e e e 7
4.2 ame_entry03_io_type Class Reference L 8
4.3 ame_entry95_io_type Class Reference L 8
4.4 ame_mass Class Reference e 9
4.5 boson Class Reference e e e e 11
4.6 classical Class Reference e e e 12
4.7 deriv_part Class Reference L e e 13
4.8 eff_boson Class Reference e 14
4.9 eff fermion Class Reference e e 17
4.10 eff_quark Class Reference e 20
4.11 fermion Class Reference e e 21
4.12 fermion_T Class Reference e e 23
4.13 full_dist Class Reference e 26
4.14 hfb_mass Class Reference 27
4.15 hfb_mass_entry Struct Reference 28
4.16 mass_fitClass Reference L e 29
4.17 mnmsk_mass Class Reference L e 30
4.18 mnmsk_mass_entry Struct Reference 31
4.19 mnmsk_mass_exp Class Reference e 33
4.20 nonrel_fermion Class Reference L 34
4.21 nonrel_fermion_zerot Class Reference 35
4.22 nuclear_dist Class Reference e 36
423 nuclear_dist::iterator Class Reference e 37
4.24 nuclear_mass Class Reference e 38
4.25 nuclear_mass_cont Class Reference e 40
426 nuclear_mass_disc Class Reference 41
4.27 nuclear_mass_fit Class Reference e 42
428 nuclear_mass_info Class Reference e 43
4.29 nuclear_mass_info::string_less_than Struct Reference oL o oL 45
430 nuclear_reaction Class Reference e, 45
431 nucleus Class Reference e e 46
432 partClass Reference e 47
433 part_ioc Class Reference e e e 48
434 quark Class Reference o e e e e e 49
4.35 reaction_lib Class Reference e 50
436 rel_boson Class Reference 52
437 rel_fermion Class Reference 53
438 semi_empirical_mass Class Reference e 55
439 simple_dist Class Reference e e e e e 56
440 sn_classical Class Reference e 58
4.41 sn_fermion Class Reference e e 59
4.42 sn_nr_fermion Class Reference L 63

1 Main Page 1

443 thermo Class Reference e e 66
5 File Documentation 67
5.1 part.h File Reference e e e e e e 67

1 Main Page

1.1 Quick Reference to User’s Guide

* Particles
¢ Atomic nuclei
» Example source code

* Bibliography

1.2 Particles

These classes in the library 02scl_part calculate the thermodynamic properties of interacting and non-interacting quantum and
classical particles.

The class part is the basic structure for a particle:

* part::m - mass

* part::g - degeneracy factor (e.g. 25 + 1)

e part::n - number density

* part::ed - energy density

* part::pr - pressure

* part::en - entropy density

e part::ms - effective mass

e part::nu - effective chemical potential

e part::inc_rest_mass - True if the rest mass is included

e part::non_interacting - False if the particle includes interactions

The data members part::ms and part::nu allow one to specify modifications to the mass and the chemical potential due to interactions.
This allows one to calculate the properties of particle due to interactions so long as the basic form of the free-particle dispersion

relation is unchanged, i.e.
VE2+m?2—p—VE24+m*?2—v

Typically, if the particle is non-interacting, then part::mu and part::m are copied to part::nu and part::ms, computations are performed
with part::nu and part::ms, and then, if necessary, the result for part::nu is copied back to part::mu.

If part::inc_rest_mass is t rue (as is the default in all of the classes except nucleus), then all functions include the rest mass energy
density in the energy density, the "mu" functions expect that the rest mass is included in part::mu or part::nu as input and the "density"
functions output part::mu or part::nu including the rest mass.

1.3 Atomic nuclei 2

When part::inc_rest_mass is true, antiparticles are implemented by choosing the antiparticle chemical potential to be —u, and when
inc_rest_mass is false, antiparticles are implemented by choosing the chemical potential of the antiparticles to be —u — 2m.

The thermodynamic identity used to compute the pressure for interacting particles is
P=—+4+sT+vn

where part::nu is used. This way, the particle class doesn’t need to know about the structure of the interactions to ensure that the
thermodynamic identity is satisfied. Note that in the Osscl_eos library, where in the equations of state the normal thermodynamic
identity is used

P=—+sT+un

Frequently, the interactions which create an effective chemical potential which is different than part::mu thus create extra terms in
the pressure and the energy density for the given equation of state.

At zero temperature, fermions and bosons can be treated exactly in the classes fermion and boson. The quark class is a descendant of
the fermion class which contains extra data members for the quark condensate and the contribution to the bag constant. The classical
classical is a descendant of both fermion and boson and calculates everything in the classical limit.

At finite temperature, there are different classes corresponding to different approaches to computing the integrals over the distribution
functions. The approximation scheme from Johns96 is used in eff_boson, eff_fermion, and eff_quark. An exact method employing
direct integration of the distribution functions is used in rel_boson and rel_fermion, but these are necessarily quite a bit slower.

The class nonrel_fermion assumes a non-relativistic dispersion relation for fermions. It includes zero-temperature methods and an
exact method for finite temperatures. The non-relativistic integrands are much simpler and nonrel_fermion uses the appropriate GSL
functions to compute them.

Units:

Factors of h, c and kp have been removed everywhere, so that mass, energy, and temperature all have the same units. Number and
entropy densities have units of mass cubed (or energy cubed). This particle classes can be used with any system of units which is
based on powers of one unit, i.e. [n] = [T]3 = [m]? = [P]?/* = [¢]3/4, etc.

Derivative information:

Sometimes it is useful to know derivatives like ds/dT in addition to the energy and pressure. There are three classes which compute
these derivatives for fermions and classical particles. The class sn_classical handles the nondegenerate limit, sn_fermion handles
fermions and sn_nr_fermion handles nonrelativistic fermions. These classes compute the derivatives

(dn) < dn) d < ds)

TR ’ % al ’ an % al

du) ar),, arj,,

All other first derivatives of the thermodynamic functions can be written in terms of these three. To see how to compute the specific
heat, for example, see the discussion in the documentation of deriv_part.

1.3 Atomic nuclei

Nuclei

Atomic nuclei, class nucleus, are implemented as descendants of classical. This class sets the value of nucleus::inc_rest_mass to
false by default.

Nuclear mass formulas are given as children of nuclear_mass. The class ame_mass provides the experimental data from Audi95 or
Audi03, the class mnmsk_mass provides the mass formula from Moller95, and the class hfb_mass provides the mass formula from
Goriely02, Samyn04, or GorielyO7. A simple semi-empirical mass formula is given in semi_empirical_mass and this can be fit to
experimentally measured masses using mass_fit.

The class nuclear_dist provides an generic base class for a collection of several nuclei with an STL-like iterator. There are two
implementations of this base class, simple_dist which provides a simple distribution and full_dist which enumerates all the nuclei

1.4 Example source code

for a given mass formula.

1.4 Example source code
1.4.1 exlist_subsect

* Particle example

* Nuclear mass fit example

1.4.2 Particle example

/* Example: ex_part.cpp

*/

#include <cmath>

#include <o2scl/test_mgr.h>
#include <o2scl/constants.h>
#include <o2scl/eff_fermion.h>
#include <o2scl/rel_fermion.h>
#include <o2scl/classical.h>

using namespace std;
using namespace o2scl;
using namespace o2scl_const;

int main(void) {
test_mgr t;
t.set_output_level(1l);

// Create two different electrons, one using the exact method from
// rel_fermion, and the other from the approximate scheme used in
// eff_fermion. We work in units of inverse Fermis, so that energy
// density is fm"~{-4}. We also use a classical particle, to compare
// to the nondegenerate approximation.

eff fermion e(o2scl_fm::mass_electron,2.0);

rel_fermion e2 (o2scl_fm::mass_electron,2.0);

classical e3(o2scl_fm::mass_electron,2.0);

// Compute the pressure at a density of 0.0001 fm"{-3} and a

// temperature of 10 MeV. At these temperatures, the electrons are
// non-degenerate, and Boltzmann statistics nearly applies.
e.n=0.0001;

e.calc_density (10.0/hc_mev_£fm);

e2.n=0.0001;

e2.calc_density (10.0/hc_mev_£fm);

e3.n=0.0001;

e3.calc_density (10.0/hc_mev_fm);

cout << e.pr << " " << e2.pr << " " << e3.pr << " "
<< e.n*10.0/hc_mev_fm << endl;

// Test

t.test_rel(e.pr,e2.pr,1.0e-2,"EFF vs. exact");
t.test_rel(e2.pr,e3.pr,4.0e-1,"classical vs. exact");
t.test_rel(e.nx10.0/hc_mev_fm,e3.pr,1.0e-1,"classical vs. ideal gas law");

// Compute the pressure at a density of 0.1 fm"{-3} and a

// temperature of 1 MeV. At these temperatures, the electrons are
// strongly degenerate

e.n=0.0001;

e.calc_density (10.0/hc_mev_fm);

e2.n=0.0001;

1.4 Example source code

e2.calc_density (10.0/hc_mev_fm) ;
cout << e.pr << " " << e2.pr << endl;

// Test
t.test_rel(e.pr,e2.pr,1.0e-2,"EFF vs. exact");

// Now add the contribution to the pressure from positrons using the
// implmentation of part::pair_density ()

e.n=0.0001;

e.pair_density (10.0/hc_mev_fm);

e2.n=0.0001;

e2.pair_density (10.0/hc_mev_fm);

cout << e.pr << " " << e2.pr << endl;

// Test
t.test_rel(e.pr,e2.pr,1.0e-2,"EFF vs. exact");

t.report();
return 0;

}

// End of example

1.4.3 Nuclear mass fit example

/* Example: ex_mass_fit.cpp

«/

#include <iostream>
#include <o2scl/test_mgr.h>
#include <o2scl/mass_fit.h>

using namespace std;

using namespace o2scl;

using namespace o2scl_const;
using namespace o2scl_fm;

int main(void) {
test_mgr t;
t.set_output_level(1l);

cout.setf (ios::scientific);

// The RMS deviation of the fit
double res;

// The mass formula to be fitted
semi_empirical_mass sem;

// The fitting class

mass_fit mf;

// Perform the fit
mf.fit (sem, res);

// Output the results

cout << sem.B << " " << sem.Sv << " " << sem.Ss << " "
<< sem.Ec << " " << sem.Epair << endl;

cout << res << endl;

t.test_gen(res<4.0, "Successful fit.");

t.report();
return 0;

}

// End of example

1.5 Bibliography 5

1.5 Bibliography

Some of the references which contain links should direct you to the work referred to directly through dx.doi.org.
Audi95: G. Audi and A. H. Wapstra, Nucl. Phys. A 595 (1995) 409-480.

Audi03: G.Audi, A. H. Wapstra and C. Thibault , Nucl. Phys. A 729 (2003) 337.

Eggleton73: P. P. Eggleton, J. Faulkner, and B. P. Flannery, Astron. and Astrophys. 23 (1973) 325.

Goriely02: S. Goriely, M. Samyn, P.-H. Heenen, J. M. Pearson, and F. Tondeur, Phys. Rev. C 66 (2002) 024326.
Goriely07: S. Goriely, M. Samyn, and J. M. Pearson, Phys. Rev. C 75 (2007) 064312.

Johns96: Johns, PJ. Ellis, and J.M. Lattimer, Astrophys. J. 473 (1996) 1020.

Moller95: P. Moller, J.R. Nix, W.D. Myers, and W.J. Switecki, At. Data Nucl. Data Tables 59 (1995) 185.
Samyn04: M. Samyn, S. Goriely, M. Bender and J. M. Pearson, Phys. Rev. C 70 (2004) 044309.

2 Ideas for future development

Class ame_mass Create a caching and more intelligent search system for the table. The table is sorted by A and then N, so we
could probably just copy the search routine from mnmsk_mass, which is sorted by Z and then N.

Class ame_mass Use the atomic mass unit and other constants defined in the evaulation
Class classical Write a calc_density_zerot() function for completeness?
Class eff_fermion Use bracketing to speed up one-dimensional root finding.

Class fermion Use hypot() and other more accurate functions for the analytic expressions for the zero temperature integrals.
[Progress has been made, but there are probably other functions which may break down for small but finite masses and
temperatures]

Class fermion_T Create a Chebyshev approximation for inverting the the Fermi functions for massless_calc_density() functions?

Global fermion_T::massless_pair_density(const double temper) This could be improved by including more terms in the expan-
sions.

Class mass_fit Convert to a real fit with errors and covariance, etc.

Class nonrel_fermion This could be improved by performing a Chebyshev approximation (for example) to invert the density
integral so that we don’t need to use a solver.

Class nuclear_mass Make the treatment of the electron binding energy contribution more consistent.

Class nuclear_mass It might be useful to consider a fudge factor to ensure no problems with finite precision arithmetic when
converting double to int.

http://dx.doi.org/10.1016/0375-9474(95)00445-9
http://dx.doi.org/10.1016/j.nuclphysa.2003.11.003
http://adsabs.harvard.edu/abs/1973A%26A....23..325E
http://link.aps.org/doi/10.1103/PhysRevC.66.024326
http://link.aps.org/doi/10.1103/PhysRevC.75.064312
http://dx.doi.org/10.1086/178212
http://dx.doi.org/10.1006/adnd.1995.1002
http://link.aps.org/doi/10.1103/PhysRevC.70.044309

3 Todo List 6

Global nuclear_mass_info::parse_elstring(std::string ela, int &Z, int &N, int &A) Allow A to precede Z.

Global nuclear_mass_info::parse_elstring(std::string ela, int &Z, int &N, int &A) Right now, n4 is interpreted incorrectly as
Nitrogen-4, rather than the tetraneutron.

Class rel_fermion Allow the user to change the upper limit on the degenerate integration and the hard-coded value of 200 in the
integrands.

Class rel_fermion It appears this doesn’t compute the uncertainty in the chemical potential or density with calc_density(). This
could be fixed.

Class simple_dist Make the vector constructor into a template so it accepts any type. Do the same for set_dist().
Class sn_fermion This class will have difficulty with extremely degenerate or extremely non-degnerate systems. Fix this.

Class sn_fermion Create a more intelligent method for dealing with bad initial guesses for the chemical potential in calc_density().

3 Todo List

Class eff_boson Better documentation (see eff_fermion)
Class eff _ boson Remove the *'meth2’ stuff
Class eff_boson Remove static variables fix_density and stat_temper

Class eff_fermion There’s still def_err_hnd.set_mode(0) in the testing code, probably because the solver has a hard time for ex-
treme values.

Global eff_fermion::calc_mu(const double temper) Should see if the function actually works if (u — m)/T = —199 .
Class eff_quark Add testing.

Class nonrel_fermion Check behaviour of calc_density() at zero density, and compare with that from eff_fermion, rel_fermion,
and classical.

Class nonrel_fermion I think calc_mu_zerot() and calc_density_zerot() are missing the proper dependence on the degeneracy, g.
(8/20/07) (I think this is fixed now, but should be tested, 8/22/07)

Class nonrel_fermion Make sure to test with non-interacting equal to true or false, and document whether or not it works with
both inc_rest_mass equal to true or false

Class rel_boson Testing not completely finished.
Class sn_classical This does not work with inc_rest_mass=true
Class sn_fermion This needs to be corrected to calculate v/ k2 + m*2 — m gracefully when m* ~ m .

Class sn_fermion Call error handler if inc_rest_mass is true or update to properly treat the case when inc_rest_mass is true.

4 Data Structure Documentation

4 Data Structure Documentation

4.1 ame_entry Struct Reference

Atomic mass entry structure.

#include <nuclear_mass.h>

4.1.1 Detailed Description

Atomic mass entry structure.

Definition at line 554 of file nuclear_mass.h.

Data Fields

e int NMZ
N-Z.
e intN
Neutron number.
e intZ
Proton number.
* int A
Atomic number.
* std::string el
Element name.
* std::string orig
Data origin.
* double mass
Mass excess.
* double dmass
Mass excess uncertainty.
* double be
Binding energy (given in the ’95 data).
¢ double dbe
Binding energy uncertainty (given in the ’95 data).
¢ double beoa
Binding energy / A (given in the '03 data).
¢ double dbeoa
Binding energy / A uncertainty (given in the ’03 data).
e std::string bdmode
Beta decay mode.
* double bde
Beta-decay energy.
* double dbde
Beta-decay energy uncertainty.
e int A2
?
* double amass
Atomic mass.
* double damass
Atomic mass uncertainty.

The documentation for this struct was generated from the following file:

¢ nuclear_mass.h

4.2 ame_entry03_io_type Class Reference

4.2 ame_entry03_io_type Class Reference

A support class for I/O of the 2003 AME data.
#include <nuclear_mass.h>

Inheritance diagram for ame_entry03_io_type::

| io_base |

T

| io_tlate< ame_entry > |

|

| ame_entry03_io_type |

4.2.1 Detailed Description

A support class for I/O of the 2003 AME data.

Definition at line 623 of file nuclear_mass.h.

Public Member Functions
* int input (cinput *co, in_file_format xins, ame_entry xt)

* int output (coutput xco, out_file_format xouts, ame_entry xt)
* virtual const char * type ()

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.3 ame_entry95_io_type Class Reference

A support class for I/O of the 1995 AME data.
#include <nuclear_mass.h>

Inheritance diagram for ame_entry95_io_type::

| io_base |

T

| io_tlate< ame_entry > |

T

| ame_entry95_io_type |

4.3.1 Detailed Description

A support class for I/O of the 1995 AME data.

Definition at line 614 of file nuclear_mass.h.

4.4 ame_mass Class Reference

Public Member Functions
* int input (cinput *co, in_file_format xins, ame_entry xt)

* int output (coutput *co, out_file_format xouts, ame_entry xt)
e virtual const char * type ()

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.4 ame_mass Class Reference

Mass formula from the Atomic Mass Evaluation (2005 and 1993).
#include <nuclear_mass.h>

Inheritance diagram for ame_mass::

| nuclear_mass info |

|

| nuclear_mass |

|

| nuclear_mass_disc |

|

| ame_mass |

4.4.1 Detailed Description

Mass formula from the Atomic Mass Evaluation (2005 and 1993).
This class provides an interface to the atomic mass table using data from Audi95 and AudiO3.

There are four data sets, selected by the specification of the version string in the constructor.

e "95rmd" - "Recommended" data from Audi95 (ame95rmd.o2)
e "95exp" - "Experimental" data from Audi95 (ame95exp.02)

¢ "03round" - "Rounded" data from Audi03 (ame0O3round.o2)

e "03" - Data from AudiO3 (default) (ame03.02)

If any string other than these four is used, the default data is loaded. If the constructor cannot find the data file (e.g. because of a

broken installation), then ame::is_loaded() returns false.

The 1995 data provided the binding energy stored in ame_entry::be and ame_entry::dbe, while the 2003 data provided the binding
energy divided by the atomic number stored in ame_entry::beoa and ame_entry::dbeoa. When the 1995 data is used ame_entry::beoa
and ame_entry::dbeoa are calculated automatically, and when the 2003 data is used ame_entry::be and ame_entry::dbe are calculated

automatically.

Note that blank entries in the original table that correspond to columns represented by the type double are set to zero arbitrarily.

Note that all uncertainties are 1 sigma uncertainties.

4.4 ame_mass Class Reference 10

Warning:

There are strict definitions of the atomic mass unit and other constants that are defined by the 1995 and 2003 atomic mass
evaluations which are not used at present.

Idea for future

Create a caching and more intelligent search system for the table. The table is sorted by A and then N, so we could probably
just copy the search routine from mnmsk_mass, which is sorted by Z and then N.

Idea for future

Use the atomic mass unit and other constants defined in the evaulation

Definition at line 673 of file nuclear_mass.h.

Public Member Functions

e ame_mass (std::string version="")
Create a collection specified by version.
* virtual const char * type ()
Return the type, "ame_mass".
e virtual bool is_included (int Z, int N)
Return false if the mass formula does not include specified nucleus.
e virtual double mass_excess (int Z, int N)
Given 7 and N, return the mass excess in MeV.
e ame_entry get_ZN (int1_Z, int 1_N)
Get element with Z=1_Z and N=I_N (e.g. 82,126).
e ame_entry get_ZA (intl_Z, int1_A)
Get element with Z=I_Z and A=1_A (e.g. 82,208).
* ame_entry get_elA (std::string 1_el, int I_A)
Get element with name I_el and A=I_A (e.g. "Pb",208).
* ame_entry get (std::string nucleus)
Get element with string (e.g. "Pb208").
¢ bool is_loaded ()

Returns true if the constructor succesfully loaded the data.

Data Fields

* intn
The number of entries (about 3000).
e std::string * short_names
The short names of the columns (length 16).
e std::string * col_names
The long names of the columns (length 16).
* std::string reference
The reference for the original data.
e ame_entry * mass
The array containing the mass data of length ame::n.

Protected Attributes

¢ bool loaded

True if loading the data was successful.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.5 boson Class Reference

11

4.5 boson Class Reference

Boson class [abstract base].
#include <boson.h>

Inheritance diagram for boson::

| eff boson | | rel_boson |

4.5.1 Detailed Description

Boson class [abstract base].

For bosons:

* if either nu or mu is greater than ms, then they are taken to be equal to ms

 All contributions from any type of condensate are ignored.

This Mathematica notebook contains the series expansions for the bosonic integrals. functions.

doc/o2scl/extras/boson.nb
doc/o2scl/extras/boson.pdf

Definition at line 66 of file boson.h.

Public Member Functions

¢ boson (double m=0.0, double g=0.0)
Create a boson with mass m and degeneracy g.

e virtual int calc_mu (const double temper)=0

* virtual int calc_density (const double temper)=0

* virtual int pair_mu (const double temper)=0

e virtual int pair_density (const double temper)=0

e virtual int massless_calc_mu (const double temper)
Calculate properties of massless bosons.

e virtual const char * type ()
Return string denoting type ("boson").

Data Fields

¢ double co
The condensate.

4.6 classical Class Reference

12

4.5.2 Member Function Documentation

4.5.2.1 virtual int massless_calc_mu (const double temper) [virtuall]
Calculate properties of massless bosons.
The expressions used are exact. The chemical potentials are ignored and the scalar density is set to zero

4.5.3 Field Documentation

4.5.3.1 double co

The condensate.

The condensate variable is mostly ignored by class boson and its descendants, and is provided for user storage.
Definition at line 76 of file boson.h.

The documentation for this class was generated from the following file:

¢ boson.h

4.6 classical Class Reference

Classical particle class.
#include <classical.h>

Inheritance diagram for classical::

part

classica

| nucleus | |sn_c|assical|

4.6.1 Detailed Description
Classical particle class.

Idea for future

Write a calc_density_zerot() function for completeness?

Definition at line 47 of file classical.h.

Public Member Functions

¢ classical (double m=0.0, double g=0.0)

Create a classical particle with mass m and degeneracy g.
* virtual int calc_mu (const double temper)

Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)

Calculate properties as function of density.

4.7 deriv_part Class Reference

13

* virtual const char * type ()
Return string denoting type ("classical”).

The documentation for this class was generated from the following file:

e classical.h

4.7 deriv_part Class Reference

Storage for deriviatives wrt p and T.
#include <deriv_part.h>

Inheritance diagram for deriv_part::

[l

sn _classica || sn_fermion ||sn_nr_fermion

4.7.1 Detailed Description

Storage for deriviatives wrt p and T.

The variables dndmu, dndT, and dsdT correspond to
(dn) < dn) d < ds)
o) el) al I
du) drT u dT "

All other derivatives can be expressed simply in terms of these three.

respectively.

Derivatives wrt to chemical potential and temperature:
ds\ _ (dn
) —\dT L
ary Py
du), " \ar),””’

The energy density derivatives are related through the thermodynamic identity:
de) (dn> < ds)
- =pu|— + T —
(dﬂ T dp) dp)
de) (dn) (ds)
(dT u dr L dr u

There is a Maxwell relation

The pressure derivatives are trivial

Other derivatives:

Note that the derivative of the entropy with respect to the temperature above is not the specific heat, cy . The specific heat is

o, = L (09 _T(0s
YON\OT),y n\oT),

4.8 eff_boson Class Reference 14

To compute the specific heat in terms of the derivatives above, note that the descendants of deriv_part provide all of the thermody-
namic functions in terms of ;, V and T', so we have

s=s(uV.T) and n=n(uV.T).

‘We can then construct a function
s = s[u(n, V,T),V,T]

and then Write the I’equired deri\/ati\/e dlrectly
n,V T,V n, a ,u,,[/ .
n, H, 5
() V (E :Zn) (Cr n‘) Vv
My M,‘/ T,

which expresses the specific heat in terms of the three derivatives which are given.

|

Now we use the identity

3

and the Maxwell relation above to give

T
Cy =

n

Note that this is the specific heat per particle, and has no units. If specific heat per unit volume is required, you must multiply by the
number density.

No derivative with respect to the bare mass is given, since classes cannot know how to relate the effective mass to the bare mass.

Definition at line 136 of file deriv_part.h.

Data Fields

double dndmu

Derivative of number density with respect to chemical potential.
double dndT

Derivative of number density with respect to temperature.
double dsdT

Derivative of entropy density with respect to temperature.
double dndm

Derivative of number density with respect to the effective mass.

The documentation for this class was generated from the following file:

e deriv_part.h

4.8 eff boson Class Reference

Boson class from fitting method.
#include <eff_ boson.h>

Inheritance diagram for eff_boson::

4.8 eff_boson Class Reference 15

4.8.1 Detailed Description

Boson class from fitting method.

Todo

Better documentation (see eff_fermion)

Todo

Remove the *meth2’ stuff

Todo

Remove static variables fix_density and stat_temper

Definition at line 51 of file eff_boson.h.

Public Member Functions

* eff_boson (double m=0.0, double g=0.0)
Create a boson with mass m and degeneracy g.
e virtual int calc_mu (const double temper)
Calculate thermodynamic properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate thermodynamic properties as function of density.
e virtual int pair_mu (const double temper)
Calculate thermodynamic properties with antiparticles as function of chemical potential.
e virtual int pair_density (const double temper)
Calculate thermodynamic properties with antiparticles as function of density.
* int set_psi_root (root< double, funct< double > > &rp)
Set the solver for use in calculating).
* int set_density_mroot (mroot< int, mm_funct< int > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* int set_meth2_root (root< int, funct< int > > &rp)
Set the solver for use in calculating the chemical potential from the density (meth2=true).
* virtual const char * type ()
Return string denoting type ("boson").

Static Public Member Functions

* static int load_coefficients (int ctype)
Load coefficients for finite-temperature approximation.

Data Fields

¢ gsl_mroot_hybrids< int,mm_funct< int > > def_density_mroot
The default solver for calc_density() and pair_density().

e cern_mroot_root< double, funct< double > > def_psi_root
The default solver for).

e cern_mroot_root< int,funct< int > > def_meth2_root
The default solver for calc_density() and pair_density().

4.8 eff_boson Class Reference 16

Static Public Attributes

¢ static const int cf_boselat3 = 1
A set of coefficients from Jim Lattimer.
e static const int cf_bosejel21 =2
A set of coefficients from Johns96.
* static const int cf_bosejel22 = 3
A set of coefficients from Johns96.
e static const int cf_bosejel34 = 4
A set of coefficients from Johns96.
* static const int cf_bosejel34cons = 5
The set of coefficients from Johns96 which retains better thermodynamic consistency.

Protected Member Functions

* int solve_fun (double x, double &y, double &psi)
The function which solves for h from 1.

* int density_fun (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Fix density for calc_density().

* int pair_density_fun (size_t nv, const ovector_base &x, ovector_base &y, int &pa)
Fix density for pair_density().

Protected Attributes

e mroot< int,mm_funct< int > > * density_mroot
The solver for calc_density().

* root< double, funct< double > > * psi_root
The solver to compute h from 1.

¢ root< int,funct< int > > % meth2_root
The solver for calc_density().

Static Protected Attributes

* static double #* Pmnb
The coefficients.
e static int sizem
The number of coefficient rows.
* static int sizen
The number of coefficient columns.
* static double parma
The parameter, a.
* static double fix_density
Temporary storage.
* static double stat_temper
Temporary storage.

4.8.2 Member Function Documentation

4.8.2.1 static int load_coefficients (int ctype) [static]
Load coefficients for finite-temperature approximation.

Presently acceptable values of fn are: boselat3 from Lattimer’s notes bosejel2l, bosejel22, bosejel34, and
bosejel34cons from Johns96.

The documentation for this class was generated from the following file:

4.9 eff _fermion Class Reference 17

e eff boson.h

4.9 eff fermion Class Reference

Fermion class from fitting method.
#include <eff_ fermion.h>

Inheritance diagram for eff_fermion::

4.9.1 Detailed Description

Fermion class from fitting method.

Based on the fitting method of Johns96 which is an update of the method from Eggleton73 . This method is approximate, but very
fast. For a more accurate (but slower) method, use rel_fermion.

Given the chemical potential and the temperature the functions calc_mu() and pair_mu() work by solving the equation

=21+ f/a+log (\/_m>

for f given ¢ = (u —m)/T. If f/a < 10719, then the alternative expression

f/(2a) }
(1+f/(2a))

is used. The pressure, energy density, and entropy, are determined as polynomials in f with a set of precomputed coefficients as done
in Johns96 .

1/122(1+f/(2a))+1og[

If ¢ is too small (less than about -200), the above procedure fails. To handle this, this class uses the classical result if @) < min_psi,
where min_psi defaults to -200.

When the density and temperature is given instead (calc_density() and pair_density()), then there are two ways to proceed.

 Use the density to solve for f .

* Use the density to solve for the chemical potential.

Because the density is a complicated polynomial in f, the former procedure does not work very well even though it might be less
time consuming. In this class, the density is solved for the effective chemical potential instead. The initial guess is just taken from
the present value of part::nu .

Note:

It is important to note that the coefficients are static and apply to all objects of type eff_fermion.

4.9 eff _fermion Class Reference 18

Todo

There’s still def_err_hnd.set_mode(0) in the testing code, probably because the solver has a hard time for extreme values.

Idea for future

Use bracketing to speed up one-dimensional root finding.

Definition at line 93 of file eff_fermion.h.

Coefficients for finite-temperature approximation

e static const int cf_fermilat3 =1
A set of coefficients from Jim Lattimer:
* static const int cf_fermijel2 =2
The smaller set of coefficients from Johns96.
* static const int cf_fermijel3 =3
The larger set of coefficients from Johns96.
e static const int cf_fermijel3cons = 4
The set of coefficients from Johns96 which retains better thermodynamic consistency.
* static int load_coefficients (int ctype)
Load coefficients.

Public Member Functions

e eff fermion (double mass=0.0, double dof=0.0)
Create a fermion with mass mass and degeneracy dof.
e virtual int calc_mu (const double temper)
Calculate thermodynamic properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate thermodynamic properties as function of density.
e virtual int pair_mu (const double temper)
Calculate thermodynamic properties with antiparticles as function of chemical potential.
* virtual int pair_density (const double temper)
Calculate thermodynamic properties with antiparticles as function of density.
* int set_psi_root (root< double, funct< double > > &rp)
Set the solver for use in calculating 1.
* int set_density_root (root< double, funct< double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* virtual const char * type ()
Return string denoting type ("eff_fermion").

Data Fields

¢ double tlimit
If the temperature is less than t Limit then the zero-temperature functions are used (default 0).
* cern_mroot_root< double, funct< double > > def_psi_root
The default solver for 1.
¢ cern_mroot_root< double, funct< double > > def_density_root
The default solver for calc_density() and pair_density().
¢ double min_psi
The minimum value of ¥ (default -200).

4.9 eff _fermion Class Reference

19

Protected Member Functions

* int solve_fun (double x, double &y, double &psi)
The function which solves for f from .

* int density_fun (double x, double &y, double &temper)
Fix density for calc_density().

* int pair_density_fun (double x, double &y, double &temper)
Fix density for pair_density().

Protected Attributes

* root< double, funct< double > > * psi_root
The solver for 1.

* root< double, funct< double > > x density_root
The other solver for calc_density().

Static Protected Attributes

* static double ** Pmnf
The matrix of coefficients.
* static double parma
The parameter a.
* static int sizem
The array row size.
* static int sizen
The array column size.

4.9.2 Member Function Documentation

4.9.2.1 virtual int calc_density (const double temper) [virtuall]

Calculate thermodynamic properties as function of density.

Warning:

This function needs a guess for the chemical potential, and will fail if that guess is not sufficiently accurate.

Implements fermion_T.

Reimplemented in eff_quark.

4.9.2.2 virtual int calc_mu (const double femper) [virtual]

Calculate thermodynamic properties as function of chemical potential.

If the quantity (u — m)/T (or (v —m™*)/T in the case of interacting particles) is less than -200, then this quietly sets the density, the

scalar density, the energy density, the pressure and the entropy to zero and exits.

Todo

Should see if the function actually works if (x — m)/T = —199..

Implements fermion_T.

Reimplemented in eff_quark.

4.10 eff quark Class Reference

4.9.2.3 static int load_coefficients (int ctype) [static]
Load coefficients.

The argument ct ype Should be one of the constants below.
4.9.2.4 virtual int pair_mu (const double temper) [virtuall]
Calculate thermodynamic properties with antiparticles as function of chemical potential.
Warning:
This function needs a guess for the chemical potential, and will fail if that guess is not sufficiently accurate.

Implements fermion_T.
Reimplemented in eff_quark.

The documentation for this class was generated from the following file:

e eff fermion.h

4.10 eff quark Class Reference

Quark class from fitting method.
#include <eff_quark.h>

Inheritance diagram for eff_quark::

| fermion || fermion |

_______ Lo

i fermion T © i fermion_T 1

_______ L LR

|eff_fermion|| quark |

4.10.1 Detailed Description
Quark class from fitting method.

Todo
Add testing.

Definition at line 45 of file eff_quark.h.

Public Member Functions

e eff_quark (double m=0.0, double g=0.0)

4.11 fermion Class Reference 21

Create a quark with mass m and degeneracy g.
* virtual int calc_mu (const double temper)

Calculate thermodynamic properties as function of chemical potential.
* virtual int calc_density (const double temper)

Calculate thermodynamic properties as function of density.
* virtual int pair_mu (const double temper)

Calculate thermodynamic properties with antiparticles as function of chemical potential.
e virtual int pair_density (const double temper)

Calculate thermodynamic properties with antiparticles as function of density.
* virtual const char * type ()

Return string denoting type ("eff_quark").

4.10.2 Member Function Documentation

4.10.2.1 virtual int calc_density (const double femper) [virtual]

Calculate thermodynamic properties as function of density.

Warning:

This function needs a guess for the chemical potential, and will fail if that guess is not sufficiently accurate.

Reimplemented from eff_fermion.

4.10.2.2 virtual int calc_mu (const double temper) [virtuall]
Calculate thermodynamic properties as function of chemical potential.

If the quantity (x —m)/T (or (v —m™*)/T in the case of interacting particles) is less than -200, then this quietly sets the density, the
scalar density, the energy density, the pressure and the entropy to zero and exits.

Todo
Should see if the function actually works if (ux — m)/T = —199.

Reimplemented from eff_fermion.

4.10.2.3 virtual int pair_mu (const double temper) [virtual]

Calculate thermodynamic properties with antiparticles as function of chemical potential.

Warning:

This function needs a guess for the chemical potential, and will fail if that guess is not sufficiently accurate.

Reimplemented from eff_fermion.

The documentation for this class was generated from the following file:

* eff_quark.h

4.11 fermion Class Reference

Fermion class.

#include <fermion.h>

4.11 fermion Class Reference 22

Inheritance diagram for fermion::

fermion

| fermion_T | [nonrel_fermion_zerot |

1
I I I I I]

| eff_fermion | | nonrel_fermion | | quark | | rel_fermion | | sn_fermion | | sn_nr_fermion

eff_quark eff_quark

4.11.1 Detailed Description

Fermion class.

This is a base class for the computation of fermionic statistics at zero temperature. The more general case of finite temperature
is taken care of by fermion_T objects. The primary functions are calc_mu_zerot() and calc_density_zerot() which compute all the
thermodynamic quantities as a function of the chemical potential, or the density, respectively.

This class also adds two member data variables, kf and del, for the Fermi momentum and the gap.

Idea for future

Use hypot() and other more accurate functions for the analytic expressions for the zero temperature integrals. [Progress has been
made, but there are probably other functions which may break down for small but finite masses and temperatures]

Definition at line 63 of file fermion.h.

Public Member Functions

e fermion (double mass=0, double dof=0)

Create a fermion with mass mass and degeneracy dof.
e virtual const char * type ()

Return string denoting type ("fermion").

Zero-temperature fermions

¢ int kf_from_density ()
Calculate the Fermi momentum from the density.
* int energy_density_zerot ()
Energy density at T=0 from kf and ms.
* int pressure_zerot ()
Pressure at T=0 from kf and ms.
e virtual int calc_mu_zerot ()
Zero temperature fermions from nu and ms.
* virtual int calc_density_zerot ()
Zero temperature fermions from n and ms.

Data Fields

e double kf

Fermi momentum.
¢ double del

Gap.

4.12 fermion_T Class Reference

23

4.11.2 Member Function Documentation

4.11.2.1 virtual int calc_density_zerot () [virtual]
Zero temperature fermions from n and ms.
This function always returns gs1_success.

Reimplemented in nonrel_fermion, and nonrel_fermion_zerot.

4.11.2.2 virtual int calc_mu_zerot () [virtual]
Zero temperature fermions from nu and ms.
This function always returns gs1_success.

Reimplemented in nonrel_fermion, and nonrel_fermion_zerot.

4.11.2.3 int energy_density_zerot ()
Energy density at T=0 from kf and ms.

Calculates the integral

g [*r
£= " k2 k2 + m*2dk
2772 0

4.11.2.4 int kf from_density ()
Calculate the Fermi momentum from the density.

Uses the relation kp = (672n/g)'/?

4.11.2.5 int pressure_zerot ()
Pressure at T=0 from kf and ms.
Calculates the integral
g kr k4
- 672), k2 + m*2

The documentation for this class was generated from the following file:

e fermion.h

4.12 fermion_T Class Reference

Fermion with finite-temperature thermodynamics [abstract base].
#include <fermion.h>

Inheritance diagram for fermion_T::

4.12 fermion_T Class Reference 24

[[[[[|
| eff_fermion | |nonre|_fermion| | quark | | rel_fermion | | sn_fermion | |sn_nr_fermion

eff_quark eff_quark

)

4.12.1 Detailed Description

Fermion with finite-temperature thermodynamics [abstract base].

This is an abstract base for the computation of finite-temperature fermionic statistics. Different children (e.g. eff_fermion and
rel_fermion) use different techniques to computing the momentum integrations.

Because massless fermions at finite temperature are much simpler, there are separate member functions included in this class to
handle them. The functions massless_calc_density() and massless_calc_mu() compute the thermodynamics of massless fermions
at finite temperature given the density or the chemical potentials. The functions massless_pair_density() and massless_pair_mu()
perform the same task, but automatically include antiparticles.

The function massless_calc_density() uses a root object to solve for the chemical potential as a function of the density. The default
is an object of type cern_mroot_root. The function massless_pair_density() does not need to use the root object because of the
simplification afforded by the inclusion of antiparticles.

Idea for future

Create a Chebyshev approximation for inverting the the Fermi functions for massless_calc_density() functions?

This Mathematica notebook contains the derivations of related series expansions and some algebra for the massless_pair() functions.

doc/o2scl/extras/fermion.nb
doc/o2scl/extras/fermion.pdf

Definition at line 176 of file fermion.h.

Public Member Functions

¢ fermion_T (double mass=0, double dof=0)
Create a fermion with mass mass and degeneracy dof.
e virtual int calc_mu (const double temper)=0
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)=0
Calculate properties as function of density.
e virtual int pair_mu (const double temper)=0
Calculate properties with antiparticles as function of chemical potential.
* virtual int pair_density (const double temper)=0
Calculate properties with antiparticles as function of density.
* int set_massless_root (root< const double, funct< const double > > &rp)
Set the solver for use in massless_calc_density().
* virtual const char * type ()
Return string denoting type ("fermion_T").

4.12 fermion_T Class Reference

25

Massless fermions

* virtual int massless_calc_mu (const double temper)
Finite temperature massless fermions.

* virtual int massless_calc_density (const double temper)
Finite temperature massless fermions.

* int massless_pair_mu (const double temper)
Finite temperature massless fermions and antifermions.

* int massless_pair_density (const double temper)
Finite temperature massless fermions and antifermions.

Data Fields

¢ cern_mroot_root< const double, funct< const double > > def_massless_root
The default solver for massless_calc_density().

4.12.2 Member Function Documentation

4.12.2.1 int massless_pair_density (const double temper)

Finite temperature massless fermions and antifermions.

In the cases n® >> T and T >> n? , expansions are used instead of the exact formulas to avoid loss of precision.

In particular, using the parameter
TS
243n?

and defining the expression

cbt = a8 (-1 +vIta)’

A
'ui\/ﬁ cbt

we can write the chemical potential as

These expressions, however, do not work well when « is very large or very small, so series expansions are used whenever o > 10*

or a < 3 x 10~%. For large a,

770&17/6

i bt ~ 21/3 ()[1/6 045/6 N 067/6 all/ﬁ 50[13/6
bt V)R T o1 Tgoes T 12018 18923 1449178

L a2 /18 13/2+32 1\°/?
bt) T3Va s \a 729 \a

This approach works to within about 1 part in 102, and is tested in fermion_ts.cpp.

and for small o,

Idea for future

This could be improved by including more terms in the expansions.

4.12.3 Field Documentation

4.12.3.1 cern_mroot_root<const double, funct<const double> > def_massless_root
The default solver for massless_calc_density().

We default to cern_mroot_root here since we don’t have a bracket or a derivative.
Definition at line 306 of file fermion.h.

The documentation for this class was generated from the following file:

+ 2592 22/3

4.13 full_dist Class Reference 26

e fermion.h

4.13 full_dist Class Reference

Full distribution including all nuclei from a discrete mass formula.
#include <nuclear_dist.h>

Inheritance diagram for full_dist::

nuclear dist

full_dist

4.13.1 Detailed Description

Full distribution including all nuclei from a discrete mass formula.

For example, to create a collection of all nuclei from the most recent (2003) Atomic Mass Evaluation, and then output all the nuclei
in the collection

ame_mass ame;

full_dist fd(&ame);

for (nuclear_dist::iterator ndi=fd.begin();ndi!=fd.end();ndi++) {
cout << ndi->7Z << " " << ndi->A << " " << ndi->m << endl;

}

Definition at line 248 of file nuclear_dist.h.

Public Member Functions

full_dist (nuclear_mass *nm, int maxA=400, bool include_neutron=false)
Create a distribution including all nuclei with atomic numbers less than maxA from the mass formula nm.

e int set_dist (nuclear_mass *nm, int maxA=400, bool include_neutron=false)

Set the distribution to all nuclei with atomic numbers less than maxA from the mass formula nm.
* virtual iterator begin ()

The beginning of the distribution.
e virtual iterator end ()

The end of the distribution.
e virtual size_t size ()
The number of nuclei in the distribution.

4.13.2 Member Function Documentation

4.13.2.1 int set_dist (nuclear_mass x nm, int maxA = 400, bool include_neutron = false)
Set the distribution to all nuclei with atomic numbers less than maxA from the mass formula nm.
The information for the previous distribution is cleared before a new distribution is set.

The documentation for this class was generated from the following file:

¢ nuclear_dist.h

4.14 hfb_mass Class Reference

27

4.14 hfb_mass Class Reference

HFB Mass formula.
#include <nuclear_mass.h>

Inheritance diagram for hfb_mass::

| nuclear_mass info |

|

| nuclear_mass |

|

| nuclear_mass_disc |

|

| hfb_mass |

4.14.1 Detailed Description

HFB Mass formula.

Definition at line 1019 of file nuclear_mass.h.

Public Member Functions

¢ hfb_mass (size_t model=14)
Create a new mass formula object using the specified model number.
e virtual bool is_included (int Z, int N)
Return false if the mass formula does not include specified nucleus.
e virtual double mass_excess (int Z, int N)
Given Z and N, return the mass excess in MeV.
* hfb_mass_entry get_ZN (int 1_Z, int 1_N)
Get the entry for the specified proton and neutron number.
* bool is_loaded ()
Verify that the constructor properly loaded the table.
double blank ()
The value which corresponds to a blank entry.
* virtual const char * type ()
Return the type, "hfb_mass".

Data Fields

* intn
The number of table entries.
* hfb_mass_entry * mass
The array containing the table.

Protected Attributes

* bool loaded

True if the table was successfully loaded.
* int last

The last table index for caching.

4.15 hfb_mass_entry Struct Reference 28

4.14.2 Constructor & Destructor Documentation

4.14.2.1 hfb_mass (size_t model = 14)
Create a new mass formula object using the specified model number.

Valid values of model at present are 2, 8, and 14, corresponding to the HFB2 (Goriely02), HFB8 (Samyn04), and HFB14
(Goriely07). If a number other than these three is given, the error handler is called.

4.14.3 Member Function Documentation

4.14.3.1 hfb_mass_entry get_ZN (int!_Z, intl_N)
Get the entry for the specified proton and neutron number.

This method searches the table using a cached binary search algorithm. It is assumed that the table is sorted first by proton number
and then by neutron number.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.15 hfb_mass_entry Struct Reference

Mass formula entry structure for HFB mass formula.

#include <nuclear_mass.h>

4.15.1 Detailed Description

Mass formula entry structure for HFB mass formula.

Definition at line 976 of file nuclear_mass.h.

Data Fields

e intN
Neutron number.
e intZ
Proton number.
e intA
Atomic number.
* double bet2
Beta 2 deformation.
* double bet4
Beta 4 deformation.
* double Rch
RMS charge radius.
* double def_wig
Deformation and Wigner energies.
* double Sn
Neutron separation energy.
e double Sp
Proton separation energy.
¢ double Qbet
Beta-decay energy.
¢ double Mcal

4.16 mass_fit Class Reference

29

Calculated mass excess.
e double Err

Error between experimental and calculated mass excess.

The documentation for this struct was generated from the following file:

¢ nuclear_mass.h

4.16 mass_fit Class Reference

Fit a nuclear mass formula.

#include <mass_fit.h>

4.16.1 Detailed Description

Fit a nuclear mass formula.

There is an example of the usage of this class given in Nuclear mass fit example.

Idea for future

Convert to a real fit with errors and covariance, etc.

Definition at line 46 of file mass_fit.h.

Public Member Functions

e virtual int fit (nuclear_mass_fit &n, double &res)
Fit the nuclear mass formula.
e virtual int eval (nuclear_mass &n, double &res)
Evaluate quality without fitting.
e int set_mmin (multi_min< int, multi_funct< int > > &umm)
Change the minimizer for use in the fit.
e int set_dist (nuclear_dist &und)
Set the distribution of nuclei to fit.
* int set_masses (nuclear_mass &uexp)
Set the experimental values to fit to.

Data Fields

¢ bool even_even
If true, then only fit doubly-even nuclei (default false).
* int minZ
Minimum proton number to fit (default 8).
* int minN
Minimum neutron number to fit (default 8).
¢ gsl_mmin_simp2< int, multi_funct< int > > def_mmin
The default minimizer.

full_dist def_dist

The default distribution of nuclei to fit (defaults to all nuclei in def_exp_mass).

e ame_mass def_exp_mass
The default experimental nuclear mass object.

4.17 mnmsk_mass Class Reference 30

4.16.2 Field Documentation

4.16.2.1 gsl_mmin_simp2<int,multi_funct<int> > def_mmin
The default minimizer.

The value of def_mmin::ntrial is automatically multiplied by 10 in the constructor because the minimization frequently requires more
trials than the default.

Definition at line 77 of file mass_fit.h.

The documentation for this class was generated from the following file:

e mass_fith

4.17 mnmsk mass Class Reference

Mass formula from Moller, Nix, Myers and Swiatecki.
#include <nuclear_mass.h>

Inheritance diagram for mnmsk_mass::

| nuclear_mass_info |

T

| nuclear_mass |

T

| nuclear_mass _disc |

T

| mnmsk_mass |

T

| mnmsk_mass_exp |

4.17.1 Detailed Description

Mass formula from Moller, Nix, Myers and Swiatecki.

The data containing an object of type moller_mass_entry for 8979 nuclei is automatically loaded by the constructor. If the file
(nucmass/mnmsk.02) is not found, then is_loaded() will return false and all calls to get_ZN() will return an object with N=Z=0.

There are several entries in the original table which are blank because they are in some way not known, measured, or computable. To
distinguish these values from zero, blank entries have been replaced by the number 1 . 0e 99. For convenience, this value is returned
by blank().

Definition at line 874 of file nuclear_mass.h.

Public Member Functions

e virtual bool is_included (int Z, int N)

Return false if the mass formula does not include specified nucleus.
e virtual double mass_excess (int Z, int N)

Given Z and N, return the mass excess in MeV.
* mnmsk_mass_entry get_ZN (int 1_Z, int 1_N)

Get the entry for the specified proton and neutron number.

4.18 mnmsk_mass_entry Struct Reference 31

¢ bool is_loaded ()
Verify that the constructor properly loaded the table.
double blank ()
The value which corresponds to a blank entry.
double neither ()
Neither beta+ or beta- is possible.
¢ double beta_stable ()
The value which corresponds to a blank entry.
* double beta_plus_and_minus ()
Both beta+ and beta- are possible.
 double greater_100 ()
The value is greater than 100.
* double very_large ()
The value is greater than 10%°.
* virtual const char * type ()
Return the type, "mnmsk_mass".

Data Fields

* intn
The number of table entries.

e mnmsk_mass_entry * mass
The array containing the table.

Protected Attributes
¢ bool loaded
True if the table was successfully loaded.

* int last
The last table index for caching.

4.17.2 Member Function Documentation

4.17.2.1 mnmsk_mass_entry get_ZN (int!_Z, intI_N)
Get the entry for the specified proton and neutron number.

This method searches the table using a cached binary search algorithm. It is assumed that the table is sorted first by proton number
and then by neutron number.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.18 mnmsk_mass_entry Struct Reference
Mass formula entry structure for Moller, et al.
#include <nuclear_mass.h>

4.18.1 Detailed Description

Mass formula entry structure for Moller, et al.

Definition at line 740 of file nuclear_mass.h.

4.18 mnmsk_mass_entry Struct Reference

Data Fields

e intN
Neutron number.
e intZ
Proton number.
* intA
Atomic number.
* double Emic
The ground-state microscopic energy.
* double Mth
The theoretical mass excess (in MeV).
* double Mexp
The experimental mass excess (in MeV).
* double sigmaexp
Experimental mass excess error.
* double EmicFL
The ground-state microscopic energy in the FRLDM.
* double MthFL
The theoretical mass excess in the FRLDM.
e std::string spinp
Spin and pairity of odd proton.
* std::string spinn
Spin and pairity of odd neutron.
* double gapp
Lipkin-Nogami proton gap.
* double gapn
Lipkin-Nogami neutron gap.
* double be
Total binding energy.
* double S1n
One neutron separation energy.
* double S2n
Two neutron separation energy.
* double PA
Percentage of daughters generated in beta decay after beta-delayed neutron emission.
* double PAm1
Desc.
* double PAm2
Desc.
¢ double Qbeta
Energy released in beta-decay.
* double Tbeta
Half-life w.r.t. GT beta-decay.
* double S1p
One proton separation energy.
* double S2p
Two proton separation energy.
* double Qalpha
Energy released in alpha-decay.
* double Talpha
Half-life w.r.t. alpha-decay.

Ground state deformations (perturbed-spheroid parameterization)

* double eps2
Quadrupole.
* double eps3

4.19 mnmsk_mass_exp Class Reference 33

Octupole.

* double eps4
Hexadecapole.

* double eps6
Hexacontatetrapole.

* double eps6sym

Hexacontatetrapole without mass asymmetry.

Ground state deformations in the spherical-harmonics expansion

* double beta2
Quadrupole.

* double beta3
Octupole.

* double betad
Hexadecapole.

* double betab

Hexacontatetrapole.
The documentation for this struct was generated from the following file:

¢ nuclear_mass.h

4.19 mnmsk_mass_exp Class Reference

The experimental values from Moller, Nix, Myers and Swiatecki.
#include <nuclear_mass.h>

Inheritance diagram for mnmsk_mass_exp::

| nuclear_mass _info |

T

| nuclear_mass |

T

| nuclear_mass _disc |

T

| mnmsk_mass |

T

| mnmsk_mass_exp |

4.19.1 Detailed Description

The experimental values from Moller, Nix, Myers and Swiatecki.

Definition at line 953 of file nuclear_mass.h.

Public Member Functions

e virtual bool is_included (int Z, int N)
Return false if the mass formula does not include specified nucleus.
e virtual double mass_excess (int Z, int N)

4.20 nonrel_fermion Class Reference 34

Given 7 and N, return the mass excess in MeV.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.20 nonrel_fermion Class Reference

Nonrelativistic fermion class.
#include <nonrel_fermion.h>

Inheritance diagram for nonrel_fermion::

fermion

nonrel_fermion

4.20.1 Detailed Description

Nonrelativistic fermion class.

The rest mass energy density is given by nxm not nxms. Note that the effective mass here is the Landau mass, not the Dirac mass.

Pressure is computed with

P =2¢/3
and entropy density with
gD
3T T

These relations can be verified with an integration by parts. See, e.g. Callen’s "Thermodynamics and an introduction to thermostatis-
tics", 2nd edition, pg. 403 or Landau and Lifshitz, Stat. Phys. 3rd edition, part 1, pg. 164.

The functions fermion::pair_density() and pair_mu() have not been implemented.

Todo

Check behaviour of calc_density() at zero density, and compare with that from eff_fermion, rel_fermion, and classical.

Todo

I think calc_mu_zerot() and calc_density_zerot() are missing the proper dependence on the degeneracy, g. (8/20/07) (I think this
is fixed now, but should be tested, 8/22/07)

Todo

Make sure to test with non-interacting equal to true or false, and document whether or not it works with both inc_rest_mass
equal to true or false

4.21 nonrel_fermion_zerot Class Reference 35

Idea for future

This could be improved by performing a Chebyshev approximation (for example) to invert the density integral so that we don’t
need to use a solver.

Definition at line 91 of file nonrel_fermion.h.

Public Member Functions

¢ nonrel_fermion (double m=0.0, double g=0.0)
Create a nonrelativistic fermion with mass 'm’ and degeneracy ’g’.
e virtual int calc_mu_zerot ()
Zero temperature fermions.
* virtual int calc_density_zerot ()
Zero temperature fermions.
* virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
* virtual int pair_mu (const double temper)
Calculate properties with antiparticles as function of chemical potential.
e virtual int pair_density (const double temper)
Calculate properties with antiparticles as function of density.
e virtual int nu_from_n (const double temper)
Calculate effective chemical potential from density.
* int set_density_root (root< double, funct< double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* virtual const char * type ()
Return string denoting type ("nonrel_fermion").

Data Fields

e cern_mroot_root< double, funct< double > > def_density_root
The default solver for calc_density().

4.20.2 Member Function Documentation

4.20.2.1 virtual int calc_density (const double femper) [virtual]
Calculate properties as function of density.

If the density is zero, this function just sets part::mu, part::nu, part::ed, part::pr, and part::en to zero and returns without calling the
error handler (even though at zero density and finite temperature, the chemical potentials formally are equal to —o0).

Implements fermion_T.

The documentation for this class was generated from the following file:

e nonrel_fermion.h

4.21 nonrel fermion_zerot Class Reference

A zero temperature non-relativistic fermion.
#include <nonrel_ fermion.h>

Inheritance diagram for nonrel_fermion_zerot::

4.22 nuclear_dist Class Reference

36

| nonrel _fermion_zerot |

4.21.1 Detailed Description

A zero temperature non-relativistic fermion.

Definition at line 172 of file nonrel_fermion.h.

Public Member Functions

* nonrel_fermion_zerot (double m=0.0, double g=0.0)
Create a nonrelativistic fermion with mass "'m’ and degeneracy ’g’.
e virtual int calc_mu_zerot ()
Zero temperature fermions.
* virtual int calc_density_zerot ()
Zero temperature fermions.
* virtual const char * type ()
Return string denoting type ("nonrel_fermion_zerot").

The documentation for this class was generated from the following file:

e nonrel_fermion.h

4.22 nuclear_dist Class Reference

A distribution of nuclei.
#include <nuclear_dist.h>

Inheritance diagram for nuclear_dist::

nuclear_dist

——

| full_dist | |simp|e_dist|

4.22.1 Detailed Description

A distribution of nuclei.

The virtual base class for a collection of objects of type nucleus . See simple_dist and full_dist for implmentations of this base class.

Definition at line 41 of file nuclear_dist.h.

4.23 nuclear_dist::iterator Class Reference 37

Data Structures

e class iterator
An iterator for the nuclear distribution.

Public Member Functions

* virtual iterator begin ()=0
The beginning of the distribution.
e virtual iterator end ()=0
The end of the distribution.
e virtual size_t size ()=0
The number of nuclei in the distribution.

The documentation for this class was generated from the following file:

¢ nuclear_dist.h

4.23 nuclear_ dist::iterator Class Reference

An iterator for the nuclear distribution.

#include <nuclear_dist.h>

4.23.1 Detailed Description

An iterator for the nuclear distribution.

The standard usage of this iterator is something of the form:

mnmsk_mass mth;

simple_dist sd(5,6,10,12,&mth);

for (nuclear_dist::iterator ndi=sd.begin();ndi!=sd.end();ndi++) {
// do something here for each nucleus

}

which would create a list consisting of three isotopes (A=10, 11, and 12) of boron and three isotopes carbon for a total of six nuclei.

Definition at line 70 of file nuclear_dist.h.

Public Member Functions

e iterator (nuclear_dist *ndpp, nucleus *npp)
Create an iterator from the given distribution using the nucleus specified in npp.
* iterator operator++ ()
Proceed to the next nucleus.
* iterator operator++ (int unused)
Proceed to the next nucleus.
* nucleus * operator — () const
Dereference the iterator.

Protected Attributes

* nucleus * np

A pointer to the current nucleus.
* nuclear_dist * ndp

A pointer to the distribution.

4.24 nuclear_mass Class Reference 38

Friends
* int operator== (const nuclear_dist::iterator &il, const nuclear_dist::iterator &i2)
Compare two nuclei.

* int operator!= (const nuclear_dist::iterator &il, const nuclear_dist::iterator &i2)
Compare two nuclei.

The documentation for this class was generated from the following file:

¢ nuclear_ dist.h

4.24 nuclear_mass Class Reference

Nuclear mass formula base [abstract base].
#include <nuclear_mass.h>

Inheritance diagram for nuclear_mass::

| nuclear_mass_info |

T

| nuclear_mass |
| nuclear_!nass_cont | | | nuclear_rLass_disc |
| T T e | —— I
|semi_empirical_ma$| | mnmsk_jnass_exp |

4.24.1 Detailed Description

Nuclear mass formula base [abstract base].

This base class provides some default functionality for the nuclear mass formulas. For typical usage, use ame_mass, mnmsk_mass,
mnmsk_mass_exp, or semi_empirical_mass.

Elements 112-118 are named "Uub", "Uut", "Uuq", "Uup", "Uuh", "Uus", and "Uuo", respectively.

The binding energy is defined by
BE = ZmH + Nmn — Mpuclide

where Mmyyclide 18 the mass of the nucleus including the mass of the electrons. The mass excess is defined by

Mexcess = Mnuclide — Amu

For example, for U238, the binding energy is 1801.695 MeV, the mass excess is 47.30366 MeV, and myyclide 1 221742.9 MeV. This
is consistent with the above, as m g is 938.7830 MeV, m,, is 939.5650 MeV, and m,, is 931.494 MeV.

Some mass formulas are undefined for sufficiently exotic nuclei. You can use the function is_included() to find if a particular nucleus
is included or not.

Warning:

The treatment of the electron binding energy contribution is not necessarily consistent at present.

4.24 nuclear_mass Class Reference

39

Some common reaction Q-values and separation energies:

Q(B87) =M(A,Z) — M(A,Z + 1): Beta-decay energy

Q(2687) = M(A,Z) — M(A,Z + 2): Double beta-decay energy
Q(487) =M(A,Z) — M(A,Z + 4): Four beta-decay energy

Q(a) = M(A,Z) — M(A — 4,7 — 2) — M(He*): Alpha-decay energy

i®)

(26
(
(
(6—n)=M(A,Z) — M(A —1,Z + 1) — M(n): Beta-delayed neutron emission decay energy
(d,a) = M(A,Z) — M(A —2,Z — 1) — M(He*) — M(H?): (d,) reaction energy
(
(
(
(

O O

EC) = M(A,Z) — M(A,Z — 1): Electron capture decay energy
Q(ECp) = M(A,Z) — M(A — 1,Z — 2): Electron capture with delayed proton emission decay energy
n,a) = M(A,Z) — M(A — 3,Z — 2) — M(He*) + M(n): (n, @) reaction energy

p,a) = M(A,Z) — M(A — 3,Z — 1) — M(He*) + M(p): (p, @) reaction energy

i®)

Q
S

(n) = —-M(A,Z) + M(A — 1,Z) + M(n): Neutron separation energy
S(p) = —M(A,Z) + M(A — 1,Z — 1) + H': Proton separation energy
(
(

S(2n) = —M(A,Z) + M(A — 2,7Z) 4+ 2M(n): Two neutron separation energy
S(2p) = —M(A,Z) + M(A — 2,7 — 2) + 2M(HY: Two proton separation energy

Idea for future

Make the treatment of the electron binding energy contribution more consistent.

Idea for future

It might be useful to consider a fudge factor to ensure no problems with finite precision arithmetic when converting double to

int.

Definition at line 290 of file nuclear_mass.h.

Public Member Functions

* virtual const char * type ()

Return the type, "nuclear_mass".
e virtual bool is_included (int Z, int N)

Return false if the mass formula does not include specified nucleus.
* int get_nucleus (int Z, int N, nucleus &n)

Fill n with the information from nucleus with the given neutron and proton number.
e virtual double mass_excess (int Z, int N)=0

Given 7 and N, return the mass excess in MeV.
e virtual double mass_excess_d (double Z, double N)=0

Given Z and N, return the mass excess in MeV.
* virtual double binding_energy (int Z, int N)

Return the binding energy in MeV.
* virtual double binding_energy_d (double Z, double N)

Return the binding energy in MeV.
e virtual double total_mass (int Z, int N)

Return the total mass of the nucleus (without the electrons) in MeV.
e virtual double total_mass_d (double Z, double N)

Return the total mass of the nucleus (without the electrons) in MeV.

4.25 nuclear_mass_cont Class Reference 40

4.24.2 Member Function Documentation

4.24.2.1 virtual double binding_energy (int Z, int N) [inline, virtual]
Return the binding energy in MeV.

The binding energy is defined to be negative for bound nuclei, thus the binding energy per baryon of Pb-208 is about -8x208 = -1664
MeV.

Definition at line 351 of file nuclear_mass.h.

4.24.2.2 virtual double binding_energy_d (double Z, double N) [inline, virtual]
Return the binding energy in MeV.

The binding energy is defined to be negative for bound nuclei, thus the binding energy per baryon of Pb-208 is about -8%208 = -1664
MeV.

Definition at line 365 of file nuclear_mass.h.

4.24.2.3 int get_nucleus (int Z, int N, nucleus & n) [inline]
Fill n with the information from nucleus with the given neutron and proton number.

All masses are given in fm~'. The total mass (withouth the electrons) is put in part::m and part::ms, the binding energy is placed
in nucleus::be, the mass excess in nucleus::mex and the degeneracy (part::g) is arbitrarily set to 1 for even A nuclei and 2 for odd A
nuclei.

Warning:

The spin degeneracy is not handled particularly intelligently. This function simply assumes 0 spin for even A and spin 1/2 for
odd A.

Definition at line 325 of file nuclear_mass.h.
4.24.2.4 virtual bool is_included (int Z, int N) [inline, virtual]
Return false if the mass formula does not include specified nucleus.

Note:

By default, this returns false, so that children must overload this function if they do not provide masses for arbitrary nuclei.

Reimplemented in ame_mass, mnmsk_mass, mnmsk_mass_exp, and hfb_mass.
Definition at line 308 of file nuclear_mass.h.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.25 nuclear_mass_cont Class Reference

Continuous nuclear mass formula [abstract base].
#include <nuclear_mass.h>

Inheritance diagram for nuclear_mass_cont::

4.26 nuclear_mass_disc Class Reference

41

| nuclear_mass info |

T

| nuclear_mass |

T

| nuclear_mass_cont |

T

| nuclear_mass fit |

| semi_empirical_mass |

4.25.1 Detailed Description

Continuous nuclear mass formula [abstract base].

Definition at line 421 of file nuclear_mass.h.

Public Member Functions
e virtual double mass_excess (int Z, int N)
Given 7 and N, return the mass excess in MeV.

e virtual double mass_excess_d (double Z, double N)=0
Given 7 and N, return the mass excess in MeV.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.26 nuclear_mass_disc Class Reference

Discrete nuclear mass formula [abstract base].
#include <nuclear_mass.h>

Inheritance diagram for nuclear_mass_disc::

| nuclear_mass_info |

T

| nuclear_mass |

T

| nuclear_mass _disc |
1

[N

|

ame_mass | | hfb_mass |

| mnmsk_mass |

T

| mnmsk_mass_exp |

4.27 nuclear_mass_fit Class Reference 42

4.26.1 Detailed Description

Discrete nuclear mass formula [abstract base].

This uses simple linear interpolation to obtain masses of nuclei with non-integer Z and N which may be particularly sensitive to the
form of the pairing.

Definition at line 398 of file nuclear_mass.h.

Public Member Functions
e virtual double mass_excess (int Z, int N)=0
Given 7 and N, return the mass excess in MeV.

e virtual double mass_excess_d (double Z, double N)
Given Z and N, return the mass excess in MeV.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.27 nuclear_mass_fit Class Reference

Fittable mass formula.
#include <nuclear_mass.h>

Inheritance diagram for nuclear_mass_fit::

| nuclear_mass info |

T

| nuclear_mass |

T

| nuclear_mass_cont |

T

| nuclear_mass fit |

| semi_empirical_mass |

4.27.1 Detailed Description

Fittable mass formula.
Nuclear mass formulas which are descendants of this class can be fit to experiment using mass_fit.

Definition at line 441 of file nuclear_mass.h.

Public Member Functions

e virtual const char * type ()
Return the type, "nuclear_mass_fit".

e virtual int fit_fun (size_t nv, const ovector_base &Xx)
Fix parameters from an array for fitting.

4.28 nuclear_mass_info Class Reference

* virtual int guess_fun (size_t nv, ovector_base &x)
Fill array with guess from present values for fitting.

Data Fields

¢ size_t nfit
Number of fitting parameters.

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.28 nuclear_mass_info Class Reference

Nuclear mass info.
#include <nuclear_mass.h>

Inheritance diagram for nuclear_mass_info::

| nuclear_mass_info |

T

[e]
| nucIear_rLass_cont | | | nuclear_rlnass_disc |

| nuclearjmass_fit || amelmass || hfbjmass || mnmsll_mass |
|semi_empirica|_mass| | mnmsk_Inass_exp |

4.28.1 Detailed Description

Nuclear mass info.

Definition at line 39 of file nuclear_mass.h.

Data Structures

e struct string_less_than
String comparison operator for element_table.

Public Member Functions

* int parse_elstring (std::string ela, int &Z, int &N, int &A)
Parse a string representing an element.
* int eltoZ (std::string el)
Return Z given the element name.
* std::string Ztoel (size_t Z)
Return the element name given Z.
e std::string tostring (size_t Z, size_t N)
Return a string of the form "Pb208" for a given Z and N.

4.28 nuclear_mass_info Class Reference 44

Protected Types

* typedef std::map< std::string, int, string_less_than >::iterator table_it
A convenient typedef for an iterator for element_table.

Protected Attributes

* std::map< std::string, int, string_less_than > element_table

A map containing the proton numbers organized by element name.
* std::string element_list [nelements]

The list of elements organized by proton number.

Static Protected Attributes

e static const int nelements = 119
The number of elements (proton number).

4.28.2 Member Function Documentation

4.28.2.1 int eltoZ (std::stringel) [inline]
Return Z given the element name.
If the string parameter el is invalid, the error handler is called and the value -1 is returned.

Definition at line 143 of file nuclear_mass.h.

4.28.2.2 int parse_elstring (std::string ela, int & Z, int & N, int & A) [inline]
Parse a string representing an element.

Accepts strings of one of the following forms:

« Pb208
* pb208
« Pb 208
« Pb-208
« pb 208

* pb-208 or one of the special strings n, p, d or t for the neutron, proton, deuteron, and triton, respectively.

Note:

At present, this allows nuclei which don’t make sense because A<Z, such as Carbon-5.

Idea for future

Allow A to precede Z.

Idea for future

Right now, n4 is interpreted incorrectly as Nitrogen-4, rather than the tetraneutron.

Definition at line 66 of file nuclear_mass.h.

4.29 nuclear_mass_info::string less_than Struct Reference 45

4.28.2.3 std::string tostring (size_t Z, size_t N) [inline]
Return a string of the form "Pb208" for a given Z and N.

Note that if Z is zero, then and ’ n’ is used to indicate the a nucleus composed entirely of neutrons and if the argument Z is greater
than 118, an empty string is returned (independ.

Definition at line 176 of file nuclear_mass.h.
4.28.2.4 std::string Ztoel (size_tZ) [inline]
Return the element name given Z.

Note:

This function returns "n" indicating the neutron for Z=0, and if the argument Z is greater than 118, an empty string is returned
after calling the error handler.

Definition at line 160 of file nuclear_mass.h.

The documentation for this class was generated from the following file:

e nuclear_mass.h

4.29 nuclear_mass_info::string_less_than Struct Reference

String comparison operator for element_table.

#include <nuclear_mass.h>

4.29.1 Detailed Description

String comparison operator for element_table.

Definition at line 189 of file nuclear_mass.h.

Public Member Functions
* bool operator() (const std::string s1, const std::string s2) const
The documentation for this struct was generated from the following file:

¢ nuclear_mass.h

4.30 nuclear_reaction Class Reference
A simple nuclear reaction specification.
#include <reaction_lib.h>

4.30.1 Detailed Description

A simple nuclear reaction specification.

Definition at line 41 of file reaction_lib.h.

4.31 nucleus Class Reference

46

Public Member Functions

* std::string to_string ()
Convert the reaction to a string for screen output.
e int clear ()
Clear the rate.
¢ nuclear_reaction (const nuclear_reaction &nr)
Copy constructor.
* nuclear_reaction & operator= (const nuclear_reaction &nr)
Copy constructor.
¢ double rate (double T9)

Compute the reaction rate from the temperature in units of 10° K.

Data Fields

* size_t chap

Chapter.
* std::string name [6]

Names of the participating nuclei.
* std::string ref

Reference.
e char type

Type of rate (resonant/non-resonant/weak).
* char rev

Forward or reverse.
¢ double Q

QO value.
double a [7]
Coefficients.

e size_t 7 [6]

Proton number of participating nuclei.
e size_t A [6]

Mass number of participating nuclei.
e size_tisomer [6]

Isomer designation of participating nuclei.

The documentation for this class was generated from the following file:

e reaction_lib.h

4.31 nucleus Class Reference

A simple nucleus class.
#include <nucleus.h>

Inheritance diagram for nucleus::

nucleus

4.32 part Class Reference 47

4.31.1 Detailed Description

A simple nucleus class.
The variable part::m is typically used for the mass of the nucleus with no electrons.

The binding energy of the nucleus (be) is typically defined as the mass of the nucleus (without the electrons) minus Z times the mass
of the proton minus N times the mass of the neutron.

The mass excess (be) is defined as the mass of the nucleus including the electron contribution minus a times the mass of the atomic
mass unit.

The variable part::inc_rest_mass is set to false by default, to insure that energies and chemical potentials do not include the rest
mass. This is typically appropriate for nuclei.

Definition at line 51 of file nucleus.h.

Data Fields

e intZ

Proton number.
e int N

Neutron number.
e int A

Atomic number.
¢ double mex

Mass excess.

¢ double be

Binding energy (with a minus sign for bound nuclei).

The documentation for this class was generated from the following file:

¢ nucleus.h

4.32 part Class Reference

Particle base class.
#include <part.h>
Inheritance diagram for part::

part

l eff_boson l l rel_boson l l nucleus l l sn_classical l l fermion_T l lnonrdjevmionﬁzerml
1
l df_fe‘rmion] l nonrs!_‘fermion] l qu‘ark] l re_fe‘rmlon] l sn_fel'mion] l m_nr_Y‘ermion

4.32.1 Detailed Description

Particle base class.

Calculate the properties of particles from their chemical potential (calc_mu() and pair_mu()) or from the density (calc_density() and
pair_density()).

When non-interacting is false, the thermodynamic integrals need both a value of "mu" and "nu". "nu" is an effective chemical
potential which appears in the argument of the exponential of the Fermi-function.

4.33 part_ioc Class Reference 48

Keep in mind, that the pair functions use anti(), which assumes that nu -> -nu and mu -> -mu for the anti-particles, which might
not be true for interacting particles. When non-interacting is true, then "ms" is set equal to "m", and "nu" is set equal to "mu",
everywhere.

The "density" functions use the value of nu (or mu when non_interacting is true) for an initial guess. Zero is very likely a bad guess,
but these functions will not warn you about this.

Definition at line 100 of file part.h.

Public Member Functions

* part (double m=0.0, double g=0.0)
make a particle of mass m and degeneracy g.
e virtual int init (double m, double g)
Set the mass m and degeneracy g.
* virtual int anti (part &ax)
Make an anti-particle.
* virtual const char * type ()
Return string denoting type ("part”).

Data Fields

* double g
degeneracy
e double m
mass
* double n
density
* double ed
energy density
* double pr
pressure
* double mu
chemical potential
 double en
entropy
* double ms
effective mass (Dirac unless otherwise specified)
¢ double nu
effective chemical potential
* bool inc_rest_mass
derivative of energy with respect to effective mass
* bool non_interacting
True if the particle is non-interacting (default true).

The documentation for this class was generated from the following file:

e part.h

4.33 part_ioc Class Reference

Setup I/O for particle classes.

#include <part_ioc.h>

4.34 quark Class Reference

49

4.33.1 Detailed Description

Setup I/O for particle classes.
This class is experimental.

Definition at line 50 of file part_ioc.h.

Data Fields

part_io_type * part_io

thermo_io_type * thermo_io
rel_boson_io_type * rel_boson_io
rel_fermion_io_type * rel_fermion_io
classical_io_type * classical_io
eff_boson_io_type x eff_boson_io
eff_fermion_io_type * eff_fermion_io
eff_quark_io_type * eff_quark_io
fermion_io_type * fermion_io
nonrel_fermion_io_type * nonrel_fermion_io

The documentation for this class was generated from the following file:

e part_ioc.h

4.34 quark Class Reference

Quark base [abstract base].
#include <quark.h>

Inheritance diagram for quark::

4.34.1 Detailed Description

Quark base [abstract base].

Definition at line 43 of file quark.h.

4.35 reaction_lib Class Reference

50

Public Member Functions

 quark (double mass=0.0, double dof=0.0)
Create a quark with mass m and degeneracy g.

* virtual int calc_mu (const double temper)=0
Calculate properties as function of chemical potential.

* virtual int calc_density (const double temper)=0
Calculate properties as function of density.

* virtual int pair_mu (const double temper)=0

Calculate properties with antiparticles as function of chemical potential.

* virtual int pair_density (const double temper)=0

Calculate properties with antiparticles as function of density.
* virtual const char * type ()

Return string denoting type ("quark").

Data Fields

* double B
Contribution to the bag constant.
* double qq

Quark condensate.

The documentation for this class was generated from the following file:

e quark.h

4.35 reaction_lib Class Reference
Simple reaction library.

#include <reaction_lib.h>
4.35.1 Detailed Description

Simple reaction library.

Units:

e Chapters 1,2,3, and 11: 1/s

Chapters 4,5,6, and 7: cm”3/g/s
* Chapter 8 and 9: cm”6/g"2/s

Chapter 10: cm”9/g"3/s
Chapters:

e 1: nucl -> nuc2

e 2: nucl -> nuc2 + nuc3

* 3: nucl -> nuc2 + nuc3 + nuc4
* 4: nucl + nuc2 -> nuc3

¢ 5: nucl + nuc2 -> nuc3 + nuc4

4.35 reaction_lib Class Reference

51

e 6: nucl + nuc2 -> nuc3 + nuc4 + nucS

e 7: nucl + nuc2 -> nuc3 + nuc4 + nucS + nuc6

¢ 8: nucl + nuc2 + nuc3 -> nuc4

* 9: nucl + nuc2 + nuc3 -> nuc4 + nucS

¢ 10: nucl + nuc2 + nuc3 + nuc4 -> nucS5 + num6

¢ 11: nucl -> nuc2 + nuc3 + nuc4 + nuc5

Original FORTRAN format:

FORMAT (il, 4x, 6a5,8x,a4,al,al, 3x,1pel2.5)
FORMAT (4e13.6)
FORMAT (3e13.6)

Definition at line 202 of file reaction_lib.h.

Public Member Functions

* int read_file_reaclib2 (std::string fname)
Read from a file in the REACLIB2 format.
* int find_in_chap (std::vector< nuclear_reaction > &nrl, size_t chap, std::string nucl, std::string nuc2=
std::string nuc4="", std::string nuc5="", std::string nuc6="")
Find a set of nuclear reactions in a specified chapter.

Data Fields
e std::vector< nuclear_reaction > lib
The library.
Protected Member Functions
¢ bool matches (size_t ul, size_t ri)
Test if entry ul in the arrays matches the library reaction.
Protected Attributes

* int fN [6]
Storage for the find function.

e int fZ 6]
« int fA [6
* size_t

4.35.2 Member Function Documentation

4.35.2.1 intread_file_reaclib2 (std::string frame)
Read from a file in the REACLIB2 format.
Note:
This function does not check that the chapter numbers are correct for the subsequent reaction.

The documentation for this class was generated from the following file:

¢ reaction_lib.h

, std::string nuc3=

nn
>

4.36 rel_boson Class Reference 52

4.36 rel_boson Class Reference

Equation of state for a relativistic boson.
#include <rel_boson.h>

Inheritance diagram for rel_boson::

rel_boson

4.36.1 Detailed Description
Equation of state for a relativistic boson.

Todo

Testing not completely finished.

Definition at line 48 of file rel_boson.h.

Public Member Functions

* rel_boson (double m=0.0, double g=0.0)
Create a boson with mass m and degeneracy g.
* virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
* virtual int pair_mu (const double temper)
Calculate properties with antiparticles as function of chemical potential.
* virtual int pair_density (const double temper)
Calculate properties with antiparticles as function of density.
e virtual int nu_from_n (const double temper)
Calculate effective chemical potential from density.
e int set_inte (inte< const double, funct< const double > > &I_nit, inte< const double, funct< const double > > &I_dit)
Set inte object.
* int set_density_root (root< const double, funct< const double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
e virtual const char * type ()
Return string denoting type ("rel_boson").

Data Fields

e int mroot_err
The error value from mroot.

e int inte_err
The error value from inte.

e cern_mroot_root< const double, funct< const double > > def_density_root
The default solver for calc_density().

4.37 rel_fermion Class Reference 53

 gsl_inte_qagiu< const double, funct< const double > > def_nit
Default nondegenerate integrator.

* gsl_inte_qag< const double, funct< const double > > def_dit
Default degenerate integrator.

The documentation for this class was generated from the following file:

¢ rel _boson.h

4.37 rel_fermion Class Reference

Equation of state for a relativistic fermion.
#include <rel_fermion.h>

Inheritance diagram for rel_fermion::

fermion_T

4.37.1 Detailed Description

Equation of state for a relativistic fermion.

This implements an equation of state for a relativistic fermion using direct integration. Define the degeneracy parameter
¢ =@@-m")/T

where v is the effective chemical potential and m* is the effective mass. For ¢ greater than deg_limit (degenerate regime), a finite
interval integrator is used and for ¢ less than deg_limit (non-degenerate regime), an integrator over the interval from [0, o) is used.
The upper limit on the degenerate integration is given by

V(20T + v)2 — m*2

The default integrators are gsl_inte_qag (for degenerate particles) and gsl_inte_qagiu (for non-degenerate particles).

When the integrators provide numerical uncertainties, these uncertainties are stored in unc. In the case of calc_density() and pair_-
density(), the uncertainty from the numerical accuracy of the solver is not included. (There is also a relatively small inaccuracy due
to the mathematical evaluation of the integrands which is not included in unc.)

One way to improve the accuracy of the computation is just to decrease the tolerances on the default integration objects. This can be
done, using, for example

rel_fermion rf(1.0,2.0);
rf.def_dit.tolx/=1.0e2;
rf.def_dit.tolf/=1.0e2;
rf.def_nit.tolx/=1.0e2;
rf.def_nit.tolf/=1.0e2;

4.37 rel_fermion Class Reference 54

which decreases the both the relative and absolute tolerances for both the degenerate and non-degenerate integrators. If one is using
either the calc_density() or pair_density() functions, one may also have to improve the accuracy of the solver which determines the
chemical potential from the density. For the default solver, this could be done with

rf.def_density_root.tolx/=1.0e2;
rf.def_density_root.tolf/=1.0e2;

Of course if these tolerances are too small, the calculation may fail.

Note:

This does not work with inc_rest_mass=false (3/30/09: There is a significant amount of testing code to ensure that it does work
with inc_rest_mass=false, so this may have been fixed already.)

Idea for future

Allow the user to change the upper limit on the degenerate integration and the hard-coded value of 200 in the integrands.

Idea for future

It appears this doesn’t compute the uncertainty in the chemical potential or density with calc_density(). This could be fixed.

Definition at line 107 of file rel_fermion.h.

Public Member Functions

* rel_fermion (double m=0.0, double g=0.0)
Create a fermion with mass m and degeneracy g.
e virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
e virtual int pair_mu (const double temper)
Calculate properties with antiparticles as function of chemical potential.
e virtual int pair_density (const double temper)
Calculate properties with antiparticles as function of density.
e virtual int nu_from_n (const double temper)
Calculate effective chemical potential from density.
* int set_inte (inte< double, funct< double > > &non_it, inte< double, funct< double > > °_it)
Set integrators.
* int set_density_root (root< double, funct< double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* virtual const char * type ()
Return string denoting type ("rel_fermion").

Data Fields

* double deg_limit
The critical degeneracy at which to switch integration techniques.
e fermion unc
Storage for the uncertainty.
* bool guess_from_nu
If true, use the present value of the chemical potential as a guess for the new chemical potential.
e cern_mroot_root< double, funct< double > > def_density_root
The default solver for calc_density().
 gsl_inte_qag< double, funct< double > > def_dit
The default integrator for degenerate fermions.
¢ gsl_inte_qagiu< double, funct< double > > def_nit
The default integrator for non-degenerate fermions.

4.38 semi_empirical_mass Class Reference

55

Protected Member Functions

¢ double density_fun (double u, double &pa)
The integrand for the density for non-degenerate fermions.
* double energy_fun (double u, double &pa)
The integrand for the energy density for non-degenerate fermions.
* double entropy_fun (double u, double &pa)
The integrand for the entropy density for non-degenerate fermions.
* double deg_density_fun (double u, double &pa)
The integrand for the density for degenerate fermions.
* double deg_energy_fun (double u, double &pa)
The integrand for the energy density for degenerate fermions.
* double deg_entropy_fun (double u, double &pa)
The integrand for the entropy density for degenerate fermions.
* int solve_fun (double x, double &yy, double &pa)
Solve for the chemical potential given the density.
* int pair_fun (double x, double &yy, double &pa)

Solve for the chemical potential given the density with antiparticles.

Protected Attributes

¢ inte< double, funct< double > > * nit
The non-degenerate integrator.

¢ inte< double, funct< double > > x dit
The degenerate integrator.

* root< double, funct< double > > * density_root
The solver for calc_density().

The documentation for this class was generated from the following file:

¢ rel_fermion.h

4.38 semi_empirical_mass Class Reference

Semi-empirical mass formula.
#include <nuclear_mass.h>

Inheritance diagram for semi_empirical_mass::

| nuclear_mass_info |

T

| nuclear_mass |

T

| nuclear_mass_cont |

T

| nuclear_mass fit |

| semi_empirical_mass |

4.39 simple_dist Class Reference

56

4.38.1 Detailed Description

Semi-empirical mass formula.

A simple semi-empirical mass formula of the form

1 72 27\ 2
E/A:B“V‘Si‘f'Ei‘i‘Sv (1_> +Epa1r(ZaN)

5 AL/3 ¢ A4/3 A
where
E —1 NandZ even
Erair(Z,N) = A};jg X +1 Nand Zodd
0 otherwise
Note:

The default parameters are arbitrary, and are not determined from a fit.

There is an example of the usage of this class given in Nuclear mass fit example.

Definition at line 491 of file nuclear_mass.h.

Public Member Functions

* virtual const char * type ()
Return the type, "semi_empirical_mass".

e virtual double mass_excess_d (double Z, double N)
Given 7 and N, return the mass excess in MeV.

e virtual int fit_fun (size_t nv, const ovector_base &Xx)
Fix parameters from an array for fitting.

* virtual int guess_fun (size_t nv, ovector_base &x)
Fill array with guess from present values for fitting.

Data Fields

* double B
Binding energy (negative and in MeV, default -16).
* double Sv
Symmetry energy (in MeV, default 23.7).
¢ double Ss
Surface energy (in MeV, default 18).
* double Ec
Coulomb energy (in MeV, default 0.7).
* double Epair
Pairing energy (MeV, default 13.0).

The documentation for this class was generated from the following file:

¢ nuclear_mass.h

4.39 simple_dist Class Reference

A simple nuclear distribution given a range in A and Z.
#include <nuclear_dist.h>

Inheritance diagram for simple_dist::

4.39 simple_dist Class Reference 57

nuclear_dist

simple_dist

4.39.1 Detailed Description

A simple nuclear distribution given a range in A and Z.

The iterator for this distribution begins with the nucleus with the lowest Z and A, and increases A before incrementing Z and
beginning again with the lowest A for that value of Z. In other words, it proceeds through all the isotopes of an element first, and
then proceeds to the next element.

For example, to create a collection of isotopes of Carbon, Nitrogen and Oxygen using the most recent (2003) Atomic Mass Evalua-
tion, and then output the nuclei in the collection

ame_mass ame;

simple_dist fd(6,8,2,30, &ame) ;

for (nuclear_dist::iterator ndi=fd.begin();ndi!=fd.end();ndi++) {
cout << ndi->7Z << " " << ndi->A << " " << ndi->m << endl;

}

Idea for future

Make the vector constructor into a template so it accepts any type. Do the same for set_dist().

Definition at line 164 of file nuclear_dist.h.

Public Member Functions

* simple_dist ()
Create an empty distribution.

* simple_dist (int minZ, int maxZ, int minA[], int maxA[], nuclear_mass &nm)
Create a distribution from ranges in A specified for each Z.

* simple_dist (int minZ, int maxZ, int minA, int maxA, nuclear_mass &nm)
Create a square distribution in A and Z.

* virtual iterator begin ()
The beginning of the distribution.

e virtual iterator end ()
The end of the distribution.

e virtual size_t size ()
The number of nuclei in the distribution.

e int set_dist (int minZ, int maxZ, int minA[], int maxA[], nuclear_mass &nm)
Set the distribution from ranges in A specified for each Z.

e int set_dist (int minZ, int maxZ, int minA, int maxA, nuclear_mass &nm)
Set a square distribution in A and Z.

4.39.2 Constructor & Destructor Documentation

4.39.2.1 simple_dist (int minZ, int maxZ, int minA[], int maxA[], nuclear_mass & nm)
Create a distribution from ranges in A specified for each Z.

The length of the arrays minA and maxA should be exactly maxZ — minZ + 1.

4.40 sn_classical Class Reference

58

4.39.3 Member Function Documentation

4.39.3.1 int set_dist (int minZ, int maxZ, int minA[], int maxA[], nuclear_mass & nm)
Set the distribution from ranges in A specified for each Z.
The length of the arrays minA and maxA should be exactly maxZ — minZ + 1.

The documentation for this class was generated from the following file:

¢ nuclear_dist.h

4.40 sn_classical Class Reference

Equation of state for a classical particle with derivatives.
#include <sn_classical.h>

Inheritance diagram for sn_classical::

part

| classical | | deriv_part |

sn_classical

4.40.1 Detailed Description
Equation of state for a classical particle with derivatives.

Todo

This does not work with inc_rest_mass=true

Definition at line 42 of file sn_classical.h.

Public Member Functions

* sn_classical (double m=0.0, double g=0.0)
Create a fermion with mass m and degeneracy g.
e virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
e virtual const char * type ()
Return string denoting type ("sn_classical”).

The documentation for this class was generated from the following file:

¢ sn_classical.h

4.41 sn_fermion Class Reference 59

4.41 sn_fermion Class Reference

Equation of state for a relativistic fermion.
#include <sn_fermion.h>

Inheritance diagram for sn_fermion::

fermion

| fermion_T | | deriv_part |

sn_fermion

4.41.1 Detailed Description
Equation of state for a relativistic fermion.

Note:
This class does not work with inc_rest_mass=true.

This implements an equation of state for a relativistic fermion using direct integration. After subtracting the rest mass from the
chemical potentials, the distribution function is

{1 + exp[(VE2 +m*2 —m — 1/)/T]}71

where k is the momentum, v is the effective chemical potential, m is the rest mass, and m* is the effective mass. For later use, we
define E* = vk? + m*? . The degeneracy parameter is

Y=+ (m—m"))/T

For 1) greater than deg_limit (degenerate regime), a finite interval integrator is used and for v less than deg_limit (non-degenerate
regime), an integrator over the interval from [0, co) is used. Typical choices are Gauss-Legendre integration for the degenerate regime
and Gauss-Laguerre integration for the non-degenerate regime. The upper limit on the degenerate integration is given by the solution

of
(VEZ2+m*2 —m —v)/T = flimit
which is
(m + £)2 — m*2

where £ = flimit x T+ v .
In the non-degenerate regime, we make the substitution u = k/T to ensure that the variable of integration does not have units.

Uncertainties are given in unc.

Todo
This needs to be corrected to calculate v'k2 + m*2 — m gracefully when m* ~ m .

Todo

Call error handler if inc_rest_mass is true or update to properly treat the case when inc_rest_mass is true.

4.41 sn_fermion Class Reference 60

Evaluation of the derivatives

The relevant derivatives of the distribution function are

(I
aof 1
ey f(l—f)f
of k
%__f(l_f)ET
of m*
8m*__f(1_f)E*T

We also need the derivative of the entropy integrand w.r.t. the distribution function, which is

S=flnf+(1—f)ln(l—f) g(; In <1ff>(yE;+m)

where the entropy density is

~53 / Sk*dk

The derivatives can be integrated directly (method = direct) or they may be converted to integrals over the distribution function
through an integration by parts (method = byparts)

b
= df (k
[1B g gzt - [ot
using the distribution function for f(k) and 0 and oo as the limits, we have
g [T dg(k) 9 [~ k
2 AN S 1—
ser | o =5 [U=) g

as long as g(k) vanishes at k = 0 . Rewriting,

g ° g < T . hE* hk
— h(k dk = WE dk
271'2/0 (k) f(1 = 1) 27r2/0 fk [k + E*

as long as h(k)/k vanishes at k = 0 .
Explicit forms

1) The derivative of the density wrt the chemical potential

dn g [k
(), = 5 | 0=

o0 2 *2
(Wj _ 9 (kE')Mk
dp), 272), E*

2) The derivative of the density wrt the temperature

dn\ g [CK(E*—m-—v)
(22) - 2 [EE 00

Using h(k) = k?/T we get

Using h(k) = k*(E* — v)/T? we get

dn\ _ g Ooi 2 %2 pox g2 (vtm
(8) — s [L [pes st (252

4.41 sn_fermion Class Reference

61

3) The derivative of the entropy wrt the chemical potential

ds\ g [T 0, n(ET-—m-v)

ds _(dn
) - \dT u
4) The derivative of the entropy wrt the temperature

ds\ g [(E* —m —v)?
(dT)#—Qﬂ_Q o ka(l_f) T3 dk

This verifies the Maxwell relation

Using h(k) = k*(E* —v)?/T3

ds g *fE -—m—v) 3 2 2 2
o _ E* E* —(E*
(dT)H 272 J, gz (L0 B - (BT (v m)] dk

5) The derivative of the density wrt the effective mass

dn g [k*m*
. 1 f)dk
(dm*)Tﬁu 2n2)y E*T A 1)

dn g >
S * fdk
(dm*)T,M 27r2/0 m'f

Using h(k) = —(k*m*)/(E*T) we get

Note:

The dsdT integration doesn’t work well if the system is very degenerate. When method is byparts, the integral involves a large
cancellation between the regions from & € (0, ulimit/2) and k € (ulimit/2, ulimit). Switching to method=direct and setting
the lower limit to llimit, may help, but recent testing on this gave negative values for dsdT. For very degenerate systems, an

expansion is probably better than trying to perform the integration.

Idea for future

This class will have difficulty with extremely degenerate or extremely non-degnerate systems. Fix this.

Idea for future

Create a more intelligent method for dealing with bad initial guesses for the chemical potential in calc_density().

Definition at line 225 of file sn_fermion.h.

Method of computing derivatives

* int method
Method (default is byparts).
* static const int direct = 1
In the form containing f(1 — f).
* static const int byparts = 2
Integrate by parts.

4.41 sn_fermion Class Reference 62

Public Member Functions

¢ sn_fermion (double m=0.0, double g=0.0)
Create a fermion with mass m and degeneracy g.
* virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
e virtual int pair_mu (const double temper)
Calculate properties with antiparticles as function of chemical potential.
* virtual int pair_density (const double temper)
Calculate properties with antiparticles as function of density.
e virtual int nu_from_n (const double temper)
Calculate effective chemical potential from density.
e int set_inte (inte< const double, funct< const double > > &unit, inte< const double, funct< const double > > &udit)
Set inte objects.
* int set_density_root (root< const double, funct< const double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* virtual const char * type ()
Return string denoting type ("sn_fermion").

Data Fields

* double deg_limit
The critical degeneracy at which to switch integration techniques (default 2.0).
* double flimit
The limit for the Fermi functions (default 20.0).
e fermion unc
Storage for the most recently calculated uncertainties.
e deriv_part dunc
Storage for the most recently calculated uncertainties.
* gsl_inte_qagiu< const double, funct< const double > > def_nit
The default integrator for the non-degenerate regime.
* gsl_inte_qag< const double, funct< const double > > def_dit
The default integrator for the degenerate regime.
¢ cern_mroot_root< const double, funct< const double > > def_density_root
The default solver for npen_density() and pair_density().

4.41.2 Member Function Documentation

4.41.2.1 int set_inte (inte< const double, funct< const double > > & unit, inte< const double, funct< const double > > &
udit)

Set inte objects.

The first integrator is used for non-degenerate integration and should integrate from O to oo (like gsl_inte_qagiu). The second
integrator is for the degenerate case, and should integrate between two finite values.

4.41.3 Field Documentation

4.41.3.1 double flimit

The limit for the Fermi functions (default 20.0).

sn_fermion will ignore corrections smaller than about exp(—flimit) .
Definition at line 244 of file sn_fermion.h.

The documentation for this class was generated from the following file:

4.42 sn_nr_fermion Class Reference 63

¢ sn_fermion.h

4.42 sn_nr_fermion Class Reference

Equation of state for a nonrelativistic fermion.
#include <sn_nr_fermion.h>

Inheritance diagram for sn_nr_fermion::

| fermion_T || deriv_part |
t f

sn_nr_fermion

4.42.1 Detailed Description

Equation of state for a nonrelativistic fermion.

This does not include the rest mass energy in the chemical potential or the rest mass energy density in the energy density to alleviate
numerical precision problems at low densities

This implements an equation of state for a nonrelativistic fermion using direct integration. After subtracting the rest mass from the

chemical potentials, the distribution function is
k2 -
1 — T

where v is the effective chemical potential, m is the rest mass, and m* is the effective mass. For later use, we define £* = k2 /2/m*

Uncertainties are given in unc.
Evaluation of the derivatives

The relevant derivatives of the distribution function are

(I
o ra-ng
e (L
o =10~ Doy

We also need the derivative of the entropy integrand w.r.t. the distribution function, which is quite simple

S=flnf+1-f)In(1-f) g‘;ln(lff)<yTE*>

4.42 sn_nr_fermion Class Reference 64

where the entropy density is
Sk*dk
S on2 /

The derivatives can be integrated directly or they may be converted to integrals over the distribution function through an integration
by parts

b
- df (k
[18 g gzt - [ot
using the distribution function for f(k) and 0 and oo as the limits, we have
g [dg(k) g [¥ k
- ——fdk = = kE)f(1— dk
22), dk f 5.2 [IR =f)pm

as long as g(k) vanishes at k = 0 . Rewriting,

27?2 272

g [~ g
i [RO =)ik = ;

© Tm h
' ——1|dk
Sl
as long as h(k)/k vanishes at k = 0 .
Explicit forms

1) The derivative of the density wrt the chemical potential

dn\ g k2
(), =2 || Fra-na

<) 502 / m* fdk
2) The derivative of the density wrt the temperature

WY g TRy
dT M a 27T2 0 T2

Using h(k) = k% /T we get

f(L = f)dk

Using h(k) = k*(E* — v)/T? we get

LU Y L A S
<dT)H2772 ; T[m (E* —v) — k] dk

3) The derivative of the entropy wrt the chemical potential

This verifies the Maxwell relation

4) The derivative of the entropy wrt the temperature

ds\ g [T (E* —v)?
<dT>,u T o2 0 k2f(1 B f) T3 dk

Using h(k) = k?(E* —v)?/T3

() 27r2/ sz[—V>2+2mfkf<E*—u) dk

4.42 sn_nr_fermion Class Reference

5) The derivative of the density wrt the effective mass

dn A 9
<dm*>T7uzﬂz/0 ey AR

d < 3k?
(), =0, T
dm*), 27 Jo 7 2m*

Using h(k) = k*/(2m*2T) we get

New section

u=*k%/2/m*/T andy = /T, so

kdk = m*Tdu
or
m*T m*T
dk = ——du = du
V2m*Tu 2u
1) The derivative of the density wrt the chemical potential
*3/2 00
dj _ agm \/T U71/2 fdu
dp) ¢ 23/22

2) The derivative of the density wrt the temperature

(dn) o gm*/2T [
I

dT 23/22

1T fdu {Z’)ul/2 — yu_l/Q]

4) The derivative of the entropy wrt the temperature

d *3/2T1/2)
(dé) = 797’123/2 5 / f {5u3/2 — 6yut/? + yzufl/ﬂ du
n T 0

5) The derivative of the density wrt the effective mass

(dn) _ 3gmsl /21 / ™ 2 fd
T, 0

dm* 23/272

Definition at line 221 of file sn_nr_fermion.h.

Public Member Functions

* sn_nr_fermion (double m=0.0, double g=0.0)
Create a fermion with mass m and degeneracy g.
* virtual int calc_mu (const double temper)
Calculate properties as function of chemical potential.
* virtual int calc_density (const double temper)
Calculate properties as function of density.
* virtual int pair_mu (const double temper)
Calculate properties with antiparticles as function of chemical potential.
* virtual int pair_density (const double temper)
Calculate properties with antiparticles as function of density.
e virtual int nu_from_n (const double temper)
Calculate effective chemical potential from density.
* int set_density_root (root< const double, funct< const double > > &rp)
Set the solver for use in calculating the chemical potential from the density.
* virtual const char * type ()
Return string denoting type ("sn_nr_fermion").

4.43 thermo Class Reference

66

Data Fields

double flimit

The limit for the Fermi functions (default 20.0).

fermion unc

Storage for the most recently calculated uncertainties.

deriv_part dunc

Storage for the most recently calculated uncertainties.

bool guess_from_nu

If true, use the present value of the chemical potential as a guess for the new chemical potential.

cern_mroot_root< const double, funct< const double > > def_density_root

The default solver for npen_density() and pair_density().

Protected Member Functions

* int solve_fun (double x, double &yy, const double &temper)

Function to compute chemical potential from density.

* int pair_fun (double x, double &yy, const double &temper)

Function to compute chemical potential from density when antiparticles are included.

Protected Attributes

* root< const double, funct< const double > > * density_root

Solver to compute chemical potential from density.

4.42.2 Field Documentation

4.42.2.1 double flimit
The limit for the Fermi functions (default 20.0).

sn_nr_fermion will ignore corrections smaller than about exp(—flimit) .

Definition at line 235 of file sn_nr_fermion.h.

The documentation for this class was generated from the following file:

e sn_nr_fermion.h

4.43 thermo Class Reference

A class for the thermodynamical variables (energy density, pressure, entropy density).

#include <part.h>

4.43.1 Detailed Description

A class for the thermodynamical variables (energy density, pressure, entropy density).

Definition at line 46 of file part.h.

Public Member Functions

* const char * type ()

Return string denoting type ("thermo”).

5 File Documentation

67

Data Fields

* double pr
pressure

* double ed
energy density

* double en
entropy density

The documentation for this class was generated from the following file:

e part.h

5 File Documentation

5.1 part.h File Reference

File for definitions for thermo and part.
#include <string>

#include <iostream>

#include <cmath>

#include <o2scl/constants.h>
#include <o2scl/inte.h>
#include <o2scl/collection.h>
#include <o2scl/funct.h>

#include <o2scl/mroot.h>

Data Structures

e class thermo

A class for the thermodynamical variables (energy density, pressure, entropy density).

e class part
Particle base class.

Typedefs

* typedef io_tlate< thermo > thermo_io_type
* typedef io_tlate< part > part_io_type

Functions

* thermo operator+ (const thermo &left, const thermo &right)
Addition operator.

* thermo operator- (const thermo &left, const thermo &right)
Subtraction operator.

e thermo operator+ (const thermo &left, const part &right)
Addition operator.

¢ thermo operator- (const thermo &left, const part &right)
Subtraction operator.

5.1 part.h File Reference

68

5.1.1 Detailed Description

File for definitions for thermo and part.

Definition in file part.h.

Index

ame_entry, 7
ame_entry03_io_type, 8
ame_entry95_io_type, 8
ame_mass, 9

binding_energy
nuclear_mass, 40
binding_energy_d
nuclear_mass, 40
boson, 11
co, 12
massless_calc_mu, 12

calc_density
eff_fermion, 19
eff_quark, 21
nonrel_fermion, 35
calc_density_zerot
fermion, 23
calc_mu
eff fermion, 19
eff_quark, 21
calc_mu_zerot

fermion, 23
classical, 12
co

boson, 12

def massless_root
fermion_T, 25

def_mmin
mass_fit, 30

deriv_part, 13

eff_boson, 14
load_coefficients, 16

eff_fermion, 17
calc_density, 19
calc_mu, 19
load_coefficients, 19
pair_mu, 20

eff_quark, 20
calc_density, 21
calc_mu, 21
pair_mu, 21

eltoZ
nuclear_mass_info, 44

energy_density_zerot
fermion, 23

fermion, 21
calc_density_zerot, 23
calc_mu_zerot, 23
energy_density_zerot, 23

kf_from_density, 23

pressure_zerot, 23
fermion_T, 23

def_massless_root, 25

massless_pair_density, 25
flimit

sn_fermion, 62

sn_nr_fermion, 66
full_dist, 26

set_dist, 26

get_nucleus
nuclear_mass, 40
get_ZN
hfb_mass, 28
mnmsk_mass, 31

hfb_mass, 27
get_7ZN, 28
hfb_mass, 28
hfb_mass, 28

hfb_mass_entry, 28

is_included
nuclear_mass, 40

kf_from_density
fermion, 23

load_coefficients
eff_boson, 16
eff_fermion, 19

mass_fit, 29
def_mmin, 30
massless_calc_mu
boson, 12
massless_pair_density
fermion_T, 25
mnmsk_mass, 30
get_ZN, 31
mnmsk_mass_entry, 31
mnmsk_mass_exp, 33

nonrel_fermion, 34
calc_density, 35
nonrel_fermion_zerot, 35

nuclear_dist, 36

nuclear_dist::iterator, 37

nuclear_mass, 38
binding_energy, 40
binding_energy_d, 40
get_nucleus, 40
is_included, 40

INDEX

70

nuclear_mass_cont, 40
nuclear_mass_disc, 41
nuclear_mass_fit, 42
nuclear_mass_info, 43
eltoZ, 44
parse_elstring, 44
tostring, 44
Ztoel, 45
nuclear_mass_info::string_less_than, 45
nuclear_reaction, 45
nucleus, 46

pair_mu
eff_fermion, 20
eff_quark, 21
parse_elstring
nuclear_mass_info, 44
part, 47
part.h, 67
part_ioc, 48
pressure_zerot
fermion, 23

quark, 49

reaction_lib, 50
read_file_reaclib2, 51
read_file_reaclib2
reaction_lib, 51
rel_boson, 52
rel_fermion, 53

semi_empirical_mass, 55
set_dist
full_dist, 26
simple_dist, 58
set_inte
sn_fermion, 62
simple_dist, 56
set_dist, 58
simple_dist, 57
simple_dist, 57
sn_classical, 58
sn_fermion, 59
flimit, 62
set_inte, 62
sn_nr_fermion, 63
flimit, 66

thermo, 66
tostring
nuclear_mass_info, 44

Ztoel
nuclear_mass_info, 45

	Main Page
	Quick Reference to User's Guide
	Particles
	Atomic nuclei
	Example source code
	Bibliography

	Ideas for future development
	Todo List
	Data Structure Documentation
	ame_entry Struct Reference
	ame_entry03_io_type Class Reference
	ame_entry95_io_type Class Reference
	ame_mass Class Reference
	boson Class Reference
	classical Class Reference
	deriv_part Class Reference
	eff_boson Class Reference
	eff_fermion Class Reference
	eff_quark Class Reference
	fermion Class Reference
	fermion_T Class Reference
	full_dist Class Reference
	hfb_mass Class Reference
	hfb_mass_entry Struct Reference
	mass_fit Class Reference
	mnmsk_mass Class Reference
	mnmsk_mass_entry Struct Reference
	mnmsk_mass_exp Class Reference
	nonrel_fermion Class Reference
	nonrel_fermion_zerot Class Reference
	nuclear_dist Class Reference
	nuclear_dist::iterator Class Reference
	nuclear_mass Class Reference
	nuclear_mass_cont Class Reference
	nuclear_mass_disc Class Reference
	nuclear_mass_fit Class Reference
	nuclear_mass_info Class Reference
	nuclear_mass_info::string_less_than Struct Reference
	nuclear_reaction Class Reference
	nucleus Class Reference
	part Class Reference
	part_ioc Class Reference
	quark Class Reference
	reaction_lib Class Reference
	rel_boson Class Reference
	rel_fermion Class Reference
	semi_empirical_mass Class Reference
	simple_dist Class Reference
	sn_classical Class Reference
	sn_fermion Class Reference
	sn_nr_fermion Class Reference
	thermo Class Reference

	File Documentation
	part.h File Reference

