o2scl_const Namespace Reference


Detailed Description

O2scl constants.


Variables

const double pi = acos(-1.0)
 $ \pi $
const double pi2 = pi*pi
 $ \pi^2 $
const double zeta32 = 2.6123753486854883433
 $ \zeta(3/2) $
const double zeta2 = 1.6449340668482264365
 $ \zeta(2) $
const double zeta52 = 1.3414872572509171798
 $ \zeta(5/2) $
const double zeta3 = 1.2020569031595942854
 $ \zeta(3) $
const double zeta5 = 1.0369277551433699263
 $ \zeta(5) $
const double zeta7 = 1.0083492773819228268
 $ \zeta(7) $
Particle Physics Booklet
(see also D.E. Groom, et. al., Euro. Phys. J. C 15 (2000) 1.)

const double sin2_theta_weak = 0.2224
 $ \sin^2 \theta_W $
const double mev_kg = 1.782661731e-30
 1 MeV in kg
const double ev_mks = 1.602176462e-19
 1 eV in $ kg \cdot m^2 /s^2 $ (Joules)
const double mev_cgs = 1.60217733e-6
 1 MeV in $ g \cdot cm^2 / s^2 $ (ergs)
const double boltzmann_mev_K = 8.617342e-11
 1 MeV in Kelvin
From http://physics.nist.gov/cuu/Constants


const double hc_mev_fm = 197.3269631
 $ \hbar c $ in MeV fm
const double gfermi_gev = 1.16637e-5
 Fermi coupling constant ($ G_F $) in $ GeV^{-2} $.
const double hc_mev_cm = 1.973269631e-11
 $ \hbar c $ in MeV cm
Squared electron charge
const double e2_gaussian = o2scl_const::hc_mev_fm*gsl_num::fine_structure
 Electron charge squared in Gaussian units.
const double e2_hlorentz = gsl_num::fine_structure*4.0*pi
 Electron charge sqaured in Heaviside-Lorentz units where $\hbar=c=1$.
const double e2_mksa = gsl_mksa::electron_charge
 Electron charge squared in SI(MKSA) units.


Variable Documentation

Electron charge squared in Gaussian units.

In Gaussian Units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = 4 \pi \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - 4 \pi \rho \, , &\\& F=\frac{q_1 q_2}{r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{1}{8 \pi} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{\hbar c}=\frac{1}{137}& \end{eqnarray*}

Definition at line 968 of file constants.h.

Electron charge sqaured in Heaviside-Lorentz units where $\hbar=c=1$.

In Heaviside-Lorentz units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - \rho \, , &\\& F=\frac{q_1 q_2}{4 \pi r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{1}{2} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{4 \pi}=\frac{1}{137}& \end{eqnarray*}

Definition at line 988 of file constants.h.

Electron charge squared in SI(MKSA) units.

In MKSA units:

\begin{eqnarray*} &\vec{\nabla} \cdot \vec{E} = \rho \, , \quad \vec{E}=-\vec{\nabla} \Phi \, , \quad \nabla^2 \Phi = - \rho \, , &\\& F=\frac{1}{4 \pi \varepsilon_0}\frac{q_1 q_2}{r^2} \, , \quad W=\frac{1}{2} \int \rho V d^3 x =\frac{\varepsilon_0}{2} \int | \vec{E} |^2 d^3 x \, , \quad \alpha=\frac{e^2}{4 \pi \varepsilon_0 \hbar c}=\frac{1}{137}& \end{eqnarray*}

Note the conversion formulas

\[ q_HL=\sqrt{4 \pi} q_G = \frac{1}{\sqrt{\varepsilon_0}} q_{SI} \]

as mentioned in pg. 13 of D. Griffiths Intro to Elem. Particles.

Definition at line 1014 of file constants.h.


Documentation generated with Doxygen and provided under the GNU Free Documentation License. See License Information for details.

Project hosting provided by SourceForge.net Logo, O2scl Sourceforge Project Page