quartic_real_coeff Class Reference

#include <poly.h>

Inheritance diagram for quartic_real_coeff:

quartic_real cern_quartic_real_coeff poly_real_coeff quartic_complex gsl_poly_real_coeff naive_quartic_complex poly_complex

Detailed Description

Solve a quartic polynomial with real coefficients and complex roots.

Definition at line 253 of file poly.h.


Public Member Functions

virtual int solve_r (const double a4, const double b4, const double c4, const double d4, const double e4, double &x1, double &x2, double &x3, double &x4)
virtual int solve_rc (const double a4, const double b4, const double c4, const double d4, const double e4, std::complex< double > &x1, std::complex< double > &x2, std::complex< double > &x3, std::complex< double > &x4)
const char * type ()
 Return a string denoting the type ("quartic_real_coeff").

Member Function Documentation

virtual int solve_r ( const double  a4,
const double  b4,
const double  c4,
const double  d4,
const double  e4,
double &  x1,
double &  x2,
double &  x3,
double &  x4 
) [virtual]

Solves the polynomial $ a_4 x^4 + b_4 x^3 + c_4 x^2 + d_4 x + e_4 = 0 $ giving the four solutions $ x=x_1 $ , $ x=x_2 $ , $ x=x_3 $ , and $ x=x_4 $ .

Reimplemented from quartic_real.

Reimplemented in quartic_complex.

virtual int solve_rc ( const double  a4,
const double  b4,
const double  c4,
const double  d4,
const double  e4,
std::complex< double > &  x1,
std::complex< double > &  x2,
std::complex< double > &  x3,
std::complex< double > &  x4 
) [inline, virtual]

Solves the polynomial $ a_4 x^4 + b_4 x^3 + c_4 x^2 + d_4 x + e_4 = 0 $ giving the four complex solutions $ x=x_1 $ , $ x=x_2 $ , $ x=x_3 $ , and $ x=x_4 $ .

Reimplemented in quartic_complex, cern_quartic_real_coeff, and gsl_poly_real_coeff.

Definition at line 273 of file poly.h.


The documentation for this class was generated from the following file:

Documentation generated with Doxygen and provided under the GNU Free Documentation License. See License Information for details.

Project hosting provided by SourceForge.net Logo, O2scl Sourceforge Project Page